SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hansson Ola) ;pers:(Eliasson Lena)"

Sökning: WFRF:(Hansson Ola) > Eliasson Lena

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fadista, Joao, et al. (författare)
  • Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism.
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 111:38, s. 13924-13929
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variation can modulate gene expression, and thereby phenotypic variation and susceptibility to complex diseases such as type 2 diabetes (T2D). Here we harnessed the potential of DNA and RNA sequencing in human pancreatic islets from 89 deceased donors to identify genes of potential importance in the pathogenesis of T2D. We present a catalog of genetic variants regulating gene expression (eQTL) and exon use (sQTL), including many long noncoding RNAs, which are enriched in known T2D-associated loci. Of 35 eQTL genes, whose expression differed between normoglycemic and hyperglycemic individuals, siRNA of tetraspanin 33 (TSPAN33), 5'-nucleotidase, ecto (NT5E), transmembrane emp24 protein transport domain containing 6 (TMED6), and p21 protein activated kinase 7 (PAK7) in INS1 cells resulted in reduced glucose-stimulated insulin secretion. In addition, we provide a genome-wide catalog of allelic expression imbalance, which is also enriched in known T2D-associated loci. Notably, allelic imbalance in paternally expressed gene 3 (PEG3) was associated with its promoter methylation and T2D status. Finally, RNA editing events were less common in islets than previously suggested in other tissues. Taken together, this study provides new insights into the complexity of gene regulation in human pancreatic islets and better understanding of how genetic variation can influence glucose metabolism.
  •  
2.
  • Ström, Kristoffer, et al. (författare)
  • N1-methylnicotinamide is a signalling molecule produced in skeletal muscle coordinating energy metabolism
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is a major health problem, and although caloric restriction and exercise are successful strategies to lose adipose tissue in obese individuals, a simultaneous decrease in skeletal muscle mass, negatively effects metabolism and muscle function. To deeper understand molecular events occurring in muscle during weight-loss, we measured the expressional change in human skeletal muscle following a combination of severe caloric restriction and exercise over 4 days in 15 Swedish men. Key metabolic genes were regulated after the intervention, indicating a shift from carbohydrate to fat metabolism. Nicotinamide N-methyltransferase (NNMT) was the most consistently upregulated gene following the energy-deficit exercise. Circulating levels of N1-methylnicotinamide (MNA), the product of NNMT activity, were doubled after the intervention. The fasting-fed state was an important determinant of plasma MNA levels, peaking at ~18 h of fasting and being lowest ~3 h after a meal. In culture, MNA was secreted by isolated human myotubes and stimulated lipolysis directly, with no effect on glucagon or insulin secretion. We propose that MNA is a novel myokine that enhances the utilization of energy stores in response to low muscle energy availability. Future research should focus on applying MNA as a biomarker to identify individuals with metabolic disturbances at an early stage. 
  •  
3.
  • Lyssenko, Valeriya, et al. (författare)
  • Pleiotropic Effects of GIP on Islet Function Involve Osteopontin
  • 2011
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 60:9, s. 2424-2433
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-The incretin hormone GIP (glucose-dependent insulinotropic polypeptide) promotes pancreatic beta-cell function by potentiating insulin secretion and beta-cell proliferation. Recently, a combined analysis of several genome-wide association studies (Meta-analysis of Glucose and Insulin-Related Traits Consortium [MAGIC]) showed association to postprandial insulin at the GIP receptor (GIPR) locus. Here we explored mechanisms that could explain the protective effects of GIP on islet function. RESEARCH DESIGN AND METHODS-Associations of GIPR rs10423928 with metabolic and anthropometric phenotypes in both nondiabetic (N = 53,730) and type 2 diabetic individuals (N = 2,731) were explored by combining data from 11 studies.Insulin secretion was measured both in vivo in nondiabetic subjects and in vitro in islets from cadaver donors. Insulin secretion was also measured in response to exogenous GIP. The in vitro measurements included protein and gene expression as well as measurements of beta-cell viability and proliferation. RESULTS-The A allele of GIPR rs10423928 was associated with impaired glucose- and GIP-stimulated insulin secretion and a decrease in BMI, lean body mass, and waist circumference. The decrease in BMI almost completely neutralized the effect of impaired insulin secretion on risk of type 2 diabetes. Expression of GIPR mRNA was decreased in human islets from carriers of the A allele or patients with type 2 diabetes. GIP stimulated osteopontin (OPN) mRNA and protein expression. OPN expression was lower in carriers of the A allele. Both GIP and OPN prevented cytokine-induced reduction in cell viability (apoptosis). In addition, OPN stimulated cell proliferation in insulin-secreting cells. CONCLUSIONS-These findings support beta-cell proliferative and antiapoptotic roles for GIP in addition to its action as an incretin hormone. Identification of a link between GIP and OPN may shed new light on the role of GIP in preservation of functional beta-cell mass in humans. Diabetes 60:2424-2433, 2011
  •  
4.
  • Mahdi, Taman, et al. (författare)
  • Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes.
  • 2012
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 16:5, s. 625-633
  • Tidskriftsartikel (refereegranskat)abstract
    • A plethora of candidate genes have been identified for complex polygenic disorders, but the underlying disease mechanisms remain largely unknown. We explored the pathophysiology of type 2 diabetes (T2D) by analyzing global gene expression in human pancreatic islets. A group of coexpressed genes (module), enriched for interleukin-1-related genes, was associated with T2D and reduced insulin secretion. One of the module genes that was highly overexpressed in islets from T2D patients is SFRP4, which encodes secreted frizzled-related protein 4. SFRP4 expression correlated with inflammatory markers, and its release from islets was stimulated by interleukin-1β. Elevated systemic SFRP4 caused reduced glucose tolerance through decreased islet expression of Ca(2+) channels and suppressed insulin exocytosis. SFRP4 thus provides a link between islet inflammation and impaired insulin secretion. Moreover, the protein was increased in serum from T2D patients several years before the diagnosis, suggesting that SFRP4 could be a potential biomarker for islet dysfunction in T2D.
  •  
5.
  • Rosengren, Anders, et al. (författare)
  • Overexpression of alpha2A-adrenergic receptors contributes to type 2 diabetes
  • 2010
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 327:5962, s. 217-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Several common genetic variations have been associated with type 2 diabetes, but the exact disease mechanisms are still poorly elucidated. Using congenic strains from the diabetic Goto-Kakizaki rat, we identified a 1.4-megabase genomic locus that was linked to impaired insulin granule docking at the plasma membrane and reduced beta cell exocytosis. In this locus, Adra2a, encoding the alpha2A-adrenergic receptor [alpha(2A)AR], was significantly overexpressed. Alpha(2A)AR mediates adrenergic suppression of insulin secretion. Pharmacological receptor antagonism, silencing of receptor expression, or blockade of downstream effectors rescued insulin secretion in congenic islets. Furthermore, we identified a single-nucleotide polymorphism in the human ADRA2A gene for which risk allele carriers exhibited overexpression of alpha(2A)AR, reduced insulin secretion, and increased type 2 diabetes risk. Human pancreatic islets from risk allele carriers exhibited reduced granule docking and secreted less insulin in response to glucose; both effects were counteracted by pharmacological alpha(2A)AR antagonists.
  •  
6.
  • Yingying, Ye, et al. (författare)
  • The TCF7L2-dependent high-voltage activated calcium channel subunit α2δ-1 controls calcium signaling in rodent pancreatic beta-cells
  • 2020
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207. ; 502, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor TCF7L2 remains the most important diabetes gene identified to date and genetic risk carriers exhibit lower insulin secretion. We show that Tcf7l2 regulates the auxiliary subunit of voltage-gated Ca2+ channels, Cacna2d1 gene/α2δ-1 protein levels. Furthermore, suppression of α2δ-1 decreased voltage-gated Ca2+ currents and high glucose/depolarization-evoked Ca2+ signaling which mimicked the effect of silencing of Tcf7l2. This appears to be the result of impaired voltage-gated Ca2+ channel trafficking to the plasma membrane, as Cav1.2 channels accumulated in the recycling endosomes after α2δ-1 suppression, in clonal as well as primary rodent beta-cells. This impaired the capacity for glucose-induced insulin secretion in Cacna2d1-silenced cells. Overexpression of α2δ-1 increased high-glucose/K+-stimulated insulin secretion. Furthermore, overexpression of α2δ-1 in Tcf7l2-silenced cells rescued the Tcf7l2-dependent impairment of Ca2+ signaling, but not the reduced insulin secretion. Taken together, these data clarify the connection between Tcf7l2, α2δ-1 in Ca2+-dependent insulin secretion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy