SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hansson Oskar) srt2:(2020-2021);pers:(Zetterberg Henrik)"

Search: WFRF:(Hansson Oskar) > (2020-2021) > Zetterberg Henrik

  • Result 1-10 of 31
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andersson, Emelie, et al. (author)
  • Blood and cerebrospinal fluid neurofilament light differentially detect neurodegeneration in early Alzheimer's disease
  • 2020
  • In: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 95, s. 143-153
  • Journal article (peer-reviewed)abstract
    • Cerebrospinal fluid (CSF) neurofilament light (NfL) concentration has reproducibly been shown to reflect neurodegeneration in brain disorders, including Alzheimer's disease (AD). NfL concentration in blood correlates with the corresponding CSF levels, but few studies have directly compared the reliability of these 2 markers in sporadic AD. Herein, we measured plasma and CSF concentrations of NfL in 478 cognitively unimpaired (CU) subjects, 227 patients with mild cognitive impairment, and 113 patients with AD dementia. We found that the concentration of NfL in CSF, but not in plasma, was increased in response to Aβ pathology in CU subjects. Both CSF and plasma NfL concentrations were increased in patients with mild cognitive impairment and AD dementia. Furthermore, only NfL in CSF was associated with reduced white matter microstructure in CU subjects. Finally, in a transgenic mouse model of AD, CSF NfL increased before serum NfL in response to the development of Aβ pathology. In conclusion, NfL in CSF may be a more reliable biomarker of neurodegeneration than NfL in blood in preclinical sporadic AD.
  •  
2.
  • Andersson, Emelie, et al. (author)
  • CSF Aβ42 and Aβ40 and their relation to brain soluble and insoluble Aβ in the 5xFAD mouse model of Alzheimer's disease
  • 2021
  • In: Alzheimer's & dementia : the journal of the Alzheimer's Association. - 1552-5279. ; 17
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: In patients with AD, CSF Aβ42 is reduced while Aβ40 remains unchanged. It has been suggested that altered CSF Aβ42 is due to aggregation of this peptide into insoluble plaques, resulting in less soluble Aβ42 available for secretion to the CSF. However, the relations between soluble and insoluble Aβ42 and Aβ40 in the brain and the concentrations of these Aβ peptides in CSF are not well studied. METHODS: CSF and cortical brain tissue was collected from 2, 4, 6, and 12 months old male and female 5xFAD mice (n=45). CSF Aβ42 and Aβ40 concentrations were measured using Single molecule array (Simoa) technology. Brain sections were prepared and immunohistochemically (IHC) stained using antibodies specific for Aβ42 and Aβ40. The concentrations of Aβ42 and Aβ40 in soluble (extracted with TBS) and insoluble (extracted with formic acid) cortical brain fractions were determined by the Meso Scale Discovery technique. RESULTS: CSF Aβ42 was decreased over time whereas CSF Aβ40 remained unaltered (Fig 1). In the same mice, IHC revealed an age-related increased deposition of both Aβ42 and Aβ40 in insoluble plaques from 2 months of age (Fig 2). Moreover, measurements of Aβ42 and Aβ40 in soluble and insoluble cortical brain fractions showed increased concentrations of both peptides over time (Fig 3). CSF Aβ42 correlated inversely with cortical deposition of Aβ42 determined with IHC and the concentrations of Aβ42 in soluble and insoluble brain fractions. In contrast, no such correlations were found for Aβ40 (Fig 4). Although cortical levels of the two Aβ peptides were higher in females than in males, these sex differences were not reflected in CSF (Fig 5). CONCLUSIONS: Although significant depositions of both Aβ42 and Aβ40 were found in the brain, only Aβ42 was altered in CSF. Together with the finding that Aβ42 was increased, and not reduced, in soluble cortical brain fractions, this may suggest that mechanisms other than aggregation of Aβ42 into insoluble plaques contribute to decreased CSF concentrations of this Aβ peptide in 5xFAD mice. However, additional characterization of Aβ in the soluble brain fraction is needed to further understand its relation to the concentrations in CSF.
  •  
3.
  • Ashton, Nicholas J., et al. (author)
  • A multicentre validation study of the diagnostic value of plasma neurofilament light
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12, s. 1-12
  • Journal article (peer-reviewed)abstract
    • Increased cerebrospinal fluid neurofilament light (NfL) is a recognized biomarker for neurodegeneration that can also be assessed in blood. Here, we investigate plasma NfL as a marker of neurodegeneration in 13 neurodegenerative disorders, Down syndrome, depression and cognitively unimpaired controls from two multicenter cohorts: King's College London (n = 805) and the Swedish BioFINDER study (n = 1,464). Plasma NfL was significantly increased in all cortical neurodegenerative disorders, amyotrophic lateral sclerosis and atypical parkinsonian disorders. We demonstrate that plasma NfL is clinically useful in identifying atypical parkinsonian disorders in patients with parkinsonism, dementia in individuals with Down syndrome, dementia among psychiatric disorders, and frontotemporal dementia in patients with cognitive impairment. Data-driven cut-offs highlighted the fundamental importance of age-related clinical cut-offs for disorders with a younger age of onset. Finally, plasma NfL performs best when applied to indicate no underlying neurodegeneration, with low false positives, in all age-related cut-offs.
  •  
4.
  • Blennow, Kaj, et al. (author)
  • Cerebrospinal fluid tau fragment correlates with tau PET : a candidate biomarker for tangle pathology
  • 2020
  • In: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 143:2, s. 650-660
  • Journal article (peer-reviewed)abstract
    • To date, there is no validated fluid biomarker for tau pathology in Alzheimer's disease, with contradictory results from studies evaluating the correlation between phosphorylated tau in CSF with tau PET imaging. Tau protein is subjected to proteolytic processing into fragments before being secreted to the CSF. A recent study suggested that tau cleavage after amino acid 368 by asparagine endopeptidase (AEP) is upregulated in Alzheimer's disease. We used immunoprecipitation followed by mass spectrometric analyses to evaluate the presence of tau368 species in CSF. A novel Simoa® assay for quantification of tau368 in CSF was developed, while total tau (t-tau) was measured by ELISA and the presence of tau368 in tangles was evaluated using immunohistochemistry. The diagnostic utility of tau368 was first evaluated in a pilot study (Alzheimer's disease = 20, control = 20), then in a second cohort where the IWG-2 biomarker criteria were applied (Alzheimer's disease = 37, control = 45), and finally in a third cohort where the correlation with 18F-GTP1 tau PET was evaluated (Alzheimer's disease = 38, control = 11). The tau368/t-tau ratio was significantly decreased in Alzheimer's disease (P < 0.001) in all cohorts. Immunohistochemical staining demonstrated that tau fragments ending at 368 are present in tangles. There was a strong negative correlation between the CSF tau368/t-tau ratio and 18F-GTP1 retention. Our data suggest that tau368 is a tangle-enriched fragment and that the CSF ratio tau368/t-tau reflects tangle pathology. This novel tau biomarker could be used to improve diagnosis of Alzheimer's disease and to facilitate the development of drug candidates targeting tau pathology. Furthermore, future longitudinal studies will increase our understanding of tau pathophysiology in Alzheimer's disease and other tauopathies.
  •  
5.
  • Bogdanovic, Nenad, et al. (author)
  • [Alzheimer's disease - the most common cause of dementia]. : Alzheimers sjukdom – diagnostik och behandling i dag och i framtiden.
  • 2020
  • In: Lakartidningen. - 1652-7518. ; 117
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease is the most common cause of dementia. As many as 250,000 people in Sweden will have a dementia disease in 2050. The »amyloid cascade hypothesis« is a common model which explains how β-amyloid affects the function of the nerve cells. Alzheimer's disease has a long-lasting course and can present in typical and atypical forms. CSF analyses for »core AD CSF biomarkers« and synaptic proteins have been available for clinical diagnostics. PET scanning can detect either β-amyloid or tau aggregates in the brain of living humans. Current Alzheimer's disease therapy is based on two classes of cognition-enhancing drugs: acetylcholinesterase inhibitor and NMDA-receptor antagonist, which delays cognitive decline in most patients. The latest clinical development of potential therapy for Alzheimer's is active or passive immunotherapy against brain β-amyloid and tau, where several studies have shown varying but promising treatment effects. Non-pharmacological interventions in patients with AD aim to delay the loss of mental abilities, helping people to be independent in everyday life for as long as possible, and to increase their well-being and quality of life.
  •  
6.
  • Bogdanovic, Nenad, et al. (author)
  • Alzheimers sjukdom – diagnostik och behandling i dag och i framtiden
  • 2020
  • In: Läkartidningen. - 0023-7205. ; 117
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease is the most common cause of dementia. As many as 250,000 people in Sweden will have a dementia disease in 2050. The »amyloid cascade hypothesis« is a common model which explains how β-amyloid affects the function of the nerve cells. Alzheimer's disease has a long-lasting course and can present in typical and atypical forms. CSF analyses for »core AD CSF biomarkers« and synaptic proteins have been available for clinical diagnostics. PET scanning can detect either β-amyloid or tau aggregates in the brain of living humans. Current Alzheimer's disease therapy is based on two classes of cognition-enhancing drugs: acetylcholinesterase inhibitor and NMDA-receptor antagonist, which delays cognitive decline in most patients. The latest clinical development of potential therapy for Alzheimer's is active or passive immunotherapy against brain β-amyloid and tau, where several studies have shown varying but promising treatment effects. Non-pharmacological interventions in patients with AD aim to delay the loss of mental abilities, helping people to be independent in everyday life for as long as possible, and to increase their well-being and quality of life.
  •  
7.
  • Camporesi, Elena, et al. (author)
  • Neuroligin-1 in brain and CSF of neurodegenerative disorders: investigation for synaptic biomarkers
  • 2021
  • In: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Synaptic pathology is a central event in Alzheimer's disease (AD) and other neurodegenerative conditions, and investigation of synaptic proteins can provide valuable tools to follow synaptic dysfunction and loss in these diseases. Neuroligin-1 (Nlgn1) is a postsynaptic cell adhesion protein, important for synapse stabilization and formation. Nlgn1 has been connected to cognitive disorders, and specifically to AD, as target of the synaptotoxic effect of amyloid-beta (A beta) oligomers and A beta fibrils. To address changes in Nlgn1 expression in human brain, brain regions in different neurological disorders were examined by Western blot and mass spectrometry. Brain specimens from AD (n = 23), progressive supranuclear palsy (PSP, n = 11), corticobasal degeneration (CBD, n = 10), and Pick's disease (PiD, n = 9) were included. Additionally, cerebrospinal fluid (CSF) samples of AD patients (n = 43) and non-demented controls (n = 42) were analysed. We found decreased levels of Nlgn1 in temporal and parietal cortex (similar to 50-60% reductions) in AD brains compared with controls. In frontal grey matter the reduction was not seen for AD patients; however, in the same region, marked reduction was found for PiD (similar to 77%), CBD (similar to 66%) and to a lesser extent for PSP (similar to 43%), which could clearly separate these tauopathies from controls. The Nlgn1 level was reduced in CSF from AD patients compared to controls, but with considerable overlap. The dramatic reduction of Nlgn1 seen in the brain extracts of tauopathies warrants further investigation regarding the potential use of Nlgn1 as a biomarker for these neurodegenerative diseases.
  •  
8.
  • Chetelat, G., et al. (author)
  • Amyloid-PET and 18-F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias
  • 2020
  • In: Lancet Neurology. - 1474-4422 .- 1474-4465. ; 19:11, s. 951-962
  • Research review (peer-reviewed)abstract
    • Various biomarkers are available to support the diagnosis of neurodegenerative diseases in clinical and research settings. Among the molecular imaging biomarkers, amyloid-PET, which assesses brain amyloid deposition, and F-18-fluorodeoxyglucose (F-18-FDG) PET, which assesses glucose metabolism, provide valuable and complementary information. However, uncertainty remains regarding the optimal timepoint, combination, and an order in which these PET biomarkers should be used in diagnostic evaluations because conclusive evidence is missing. Following an expert panel discussion, we reached an agreement on the specific use of the individual biomarkers, based on available evidence and clinical expertise. We propose a diagnostic algorithm with optimal timepoints for these PET biomarkers, also taking into account evidence from other biomarkers, for early and differential diagnosis of neurodegenerative diseases that can lead to dementia. We propose three main diagnostic pathways with distinct biomarker sequences, in which amyloid-PET and F-18-FDG-PET are placed at different positions in the order of diagnostic evaluations, depending on clinical presentation. We hope that this algorithm can support diagnostic decision making in specialist clinical settings with access to these biomarkers and might stimulate further research towards optimal diagnostic strategies.
  •  
9.
  • Cicognola, Claudia, et al. (author)
  • Cerebrospinal fluid N-224 tau helps discriminate Alzheimer's disease from subjective cognitive decline and other dementias
  • 2021
  • In: Alzheimer's Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Background Elevated cerebrospinal fluid (CSF) concentrations of total tau (T-tau) and phosphorylated tau at Thr181 (P-tau181) protein are typical of Alzheimer's disease (AD). However, the T-tau assay measures only the mid-region of the protein, while tau in CSF is instead composed of a series of fragments. One fragment species in particular, N-224, shows increased levels in AD compared to controls. In this multicentre study, we performed a clinical validation of the N-224 assay in cohorts including patients with subjective cognitive decline (SCD), mild cognitive impairment (MCI), AD, non-AD dementias and controls. Methods Cohorts consisted of 30 SCD and 30 probable AD from the Amsterdam Dementia Cohort (cohort 1) and 539 controls, 195 SCD, 232 MCI, 137 AD and 253 non-AD from the Swedish BioFINDER study (cohort 2). All samples had AD core biomarkers (A beta 42, T-tau, P-tau181) measurements. N-224 was measured with an in-house ultrasensitive Simoa assay. Results N-224 levels were significantly higher in AD compared to SCD (cohort 1: p = 0.003) and in AD compared to all other diagnostic groups in cohort 2 (control, SCD, MCI and non-AD, p < 0.0001). Within the non-AD group, N-224 showed significantly lower concentrations compared to AD in Parkinson's disease (PD, p < 0.0001), Parkinson's disease dementia (PDD, p = 0.004), progressive supranuclear palsy (PSP, < 0.0001), multiple system atrophy (MSA, p = 0.002) and parkinsonisms not otherwise specified (NOS, p = 0.007). In cohort 1, higher concentrations of N-224 were associated to lower Mini-Mental State Examination (MMSE) scores (R-2 = 0.318, beta = 0.564, p <= 0.0001) and could accurately identify a pathological (< 24) MMSE score (p < 0.0001, AUC = 0.824). Conclusions N-224 tau can distinguish AD subjects from SCD and can discriminate subgroups of non-AD dementias from AD. Therefore, N-224 may be a useful addition to the tau biomarker toolbox for the study of tau species in CSF and for better understanding disease pathogenesis.
  •  
10.
  • Cicognola, Claudia, et al. (author)
  • Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment
  • 2021
  • In: Alzheimer's Research and Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Introduction: Plasma glial fibrillary acidic protein (GFAP) is a marker of astroglial activation and astrocytosis. We assessed the ability of plasma GFAP to detect Alzheimer’s disease (AD) pathology in the form of AD-related amyloid-β (Aβ) pathology and conversion to AD dementia in a mild cognitive impairment (MCI) cohort. Method: One hundred sixty MCI patients were followed for 4.7 years (average). AD pathology was defined using cerebrospinal fluid (CSF) Aβ42/40 and Aβ42/total tau (T-tau). Plasma GFAP was measured at baseline and follow-up using Simoa technology. Results: Baseline plasma GFAP could detect abnormal CSF Aβ42/40 and CSF Aβ42/T-tau with an AUC of 0.79 (95% CI 0.72–0.86) and 0.80 (95% CI 0.72–0.86), respectively. When also including APOE ε4 status as a predictor, the accuracy of the model to detect abnormal CSF Aβ42/40 status improved (AUC = 0.86, p = 0.02). Plasma GFAP predicted subsequent conversion to AD dementia with an AUC of 0.84 (95% CI 0.77–0.91), which was not significantly improved when adding APOE ε4 or age as predictors to the model. Longitudinal GFAP slopes for Aβ-positive and MCI who progressed to dementia (AD or other) were significantly steeper than those for Aβ-negative (p = 0.007) and stable MCI (p < 0.0001), respectively. Conclusion: Plasma GFAP can detect AD pathology in patients with MCI and predict conversion to AD dementia.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view