SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Harkness L. J.) ;pers:(Benzoni G.)"

Search: WFRF:(Harkness L. J.) > Benzoni G.

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Akkoyun, S., et al. (author)
  • AGATA - Advanced GAmma Tracking Array
  • 2012
  • In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002 .- 0167-5087 .- 1872-9576. ; 668, s. 26-58
  • Journal article (peer-reviewed)abstract
    • The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation γ-ray spectrometer. AGATA is based on the technique of γ-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a γ ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of γ-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector- response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer. © 2011 Elsevier B.V. All rights reserved.
  •  
2.
  • Girard-Alcindor, V., et al. (author)
  • New narrow resonances observed in the unbound nucleus F 15
  • 2022
  • In: Physical Review C. - : American Physical Society (APS). - 2469-9985 .- 2469-9993. ; 105:5
  • Journal article (peer-reviewed)abstract
    • The structure of the unbound F15 nucleus is investigated using the inverse kinematics resonant scattering of a radioactive O14 beam impinging on a CH2 target. The analysis of H1(O14,p)O14 and H1(O14,2p)N13 reactions allowed the confirmation of the previously observed narrow 1/2- resonance, near the two-proton decay threshold, and the identification of two new narrow 5/2- and 3/2- resonances. The newly observed levels decay by 1p emission to the ground of O14, and by sequential 2p emission to the ground state of N13 via the 1- resonance of O14. Gamow shell model (GSM) analysis of the experimental data suggests that the wave functions of the 5/2- and 3/2- resonances may be collectivized by the continuum coupling to nearby 2p- and 1p-decay channels. The observed excitation function H1(O14,p)O14 and resonance spectrum in F15 are well reproduced in the unified framework of the GSM.
  •  
3.
  • Pasqualato, G., et al. (author)
  • Shape evolution in even-mass 98-104Zr isotopes via lifetime measurements using the γ γ-coincidence technique
  • 2023
  • In: European Physical Journal A. - : Springer. - 1434-6001 .- 1434-601X. ; 59:11
  • Journal article (peer-reviewed)abstract
    • The Zirconium (Z = 40) isotopic chain has attracted interest for more than four decades. The abrupt lowering of the energy of the first 2(+) state and the increase in the transition strength B(E2; 2(1)(+) -> 0(1)(+) ) going from Zr-98 to Zr-100 has been the first example of "quantum phase transition" in nuclear shapes, which has few equivalents in the nuclear chart. Although a multitude of experiments have been performed to measure nuclear properties related to nuclear shapes and collectivity in the region, none of the measured lifetimes were obtained using the Recoil Distance Doppler Shift method in the gamma gamma-coincidence mode where a gate on the direct feeding transition of the state of interest allows a strict control of systematical errors. This work reports the results of lifetime measurements for the first yrast excited states in Zr98-104 carried out to extract reduced transition probabilities. The new lifetime values in gamma gamma-coincidence and gamma-single mode are compared with the results of former experiments. Recent predictions of the Interacting Boson Model with Configuration Mixing, the Symmetry Conserving Configuration Mixing model based on the Hartree-Fock- Bogoliubov approach and the Monte Carlo Shell Model are presented and compared with the experimental data.
  •  
4.
  • Ciemala, M., et al. (author)
  • Testing ab initio nuclear structure in neutron-rich nuclei : Lifetime measurements of second 2(+) state in C-16 and O-20
  • 2020
  • In: Physical Review C. - : AMER PHYSICAL SOC. - 2469-9985 .- 2469-9993. ; 101:2
  • Journal article (peer-reviewed)abstract
    • To test the predictive power of ab initio nuclear structure theory, the lifetime of the second 2(+) state in neutron-rich O-20, tau(2(2)(+)) = 150(-30)(+80) fs, and an estimate for the lifetime of the second 2(+) state in C-16 have been obtained for the first time. The results were achieved via a novel Monte Carlo technique that allowed us to measure nuclear state lifetimes in the tens-to-hundreds of femtoseconds range by analyzing the Doppler-shifted gamma-transition line shapes of products of low-energy transfer and deep-inelastic processes in the reaction O-18 (7.0 MeV/u) + Ta-181. The requested sensitivity could only be reached owing to the excellent performances of the Advanced gamma-Tracking Array AGATA, coupled to the PARIS scintillator array and to the VAMOS++ magnetic spectrometer. The experimental lifetimes agree with predictions of ab initio calculations using two- and three-nucleon interactions, obtained with the valence-space in-medium similarity renormalization group for O-20 and with the no-core shell model for C-16. The present measurement shows the power of electromagnetic observables, determined with high-precision gamma spectroscopy, to assess the quality of first-principles nuclear structure calculations, complementing common benchmarks based on nuclear energies. The proposed experimental approach will be essential for short lifetime measurements in unexplored regions of the nuclear chart, including r-process nuclei, when intense beams, produced by Isotope Separation On-Line (ISOL) techniques, become available.
  •  
5.
  • Fernández, A., et al. (author)
  • Reinterpretation of excited states in 212Po: Shell-model multiplets rather than α-cluster states
  • 2021
  • In: Physical Review C. - : American Physical Society. - 2469-9985 .- 2469-9993. ; 104:5
  • Journal article (peer-reviewed)abstract
    • A γ-ray spectroscopic study of 212Po was performed at the Grand Accélérateur National d'Ions Lourds, using the inverse kinematics α-transfer reaction 12C(208Pb,212Po)8Be and the AGATA spectrometer. A careful analysis based on γγ coincidence relations allowed us to establish 14 new excited states in the energy range between 1.9 and 3.3 MeV. None of these states, however, can be considered as candidates for the levels with spins and parities of 1− and 2− and excitation energies below 2.1 MeV, which have been predicted by recent α-cluster model calculations. A systematic comparison of the experimentally established excitation scheme of 212Po with shell-model calculations was performed. This comparison suggests that the six states with excitation energies (spins and parities) of 1744 (4−), 1751 (8−), 1787 (6−), 1946 (4−), 1986 (8−), and 2016 (6−) keV, which previously were interpreted as α-cluster states, may in fact be of positive parity and belong to low-lying shell-model multiplets. This reinterpretation of the structure of 212Po is supported by experimental information with respect to the linear polarization of γ rays, which suggests a magnetic character of the 432-keV γ ray decaying from the state at an excitation energy of 1787 keV to the 6+ yrast state, and exclusive reaction cross sections.
  •  
6.
  • Biswas, S., et al. (author)
  • Effects of one valence proton on seniority and angular momentum of neutrons in neutron-rich(51)( 122-)(131)Sb isotopes
  • 2019
  • In: Physical Review C. - : American Physical Society. - 2469-9985 .- 2469-9993. ; 99:6
  • Journal article (peer-reviewed)abstract
    • Background: Levels fulfilling the seniority scheme and relevant isomers are commonly observed features in semimagic nuclei; for example, in Sn isotopes (Z = 50). Seniority isomers in Sn, with dominantly pure neutron configurations, directly probe the underlying neutron-neutron (vv) interaction. Furthermore, an addition of a valence proton particle or hole, through neutron-proton (v pi) interaction, affects the neutron seniority as well as the angular momentum. Purpose: Benchmark the reproducibility of the experimental observables, like the excitation energies (E-x) and the reduced electric-quadrupole transition probabilities [B(E2)], with the results obtained from shell-model interactions for neutron-rich Sn and Sb isotopes with N < 82. Study the sensitivity of the aforementioned experimental observables to the model interaction components. Furthermore, explore from a microscopic point of view the structural similarity between the isomers in Sn and Sb, and thus the importance of the valence proton. Methods: The neutron-rich Sb122-131 isotopes were produced as fission fragments in the reaction Be-9(U-238, f) with 6.2 MeV/u beam energy. A unique setup, consisting of AGATA, VAMOS++, and EXOGAM detectors, was used which enabled the prompt-delayed gamma-ray spectroscopy of fission fragments in the time range of 100 ns to 200 mu s. Results: New isomers and prompt and delayed transitions were established in the even-A Sb122-131 isotopes. In the odd-A Sb122-131 isotopes, new prompt and delayed gamma-ray transitions were identified, in addition to the confirmation of the previously known isomers. The half-lives of the isomeric states and the B(E2) transition probabilities of the observed transitions depopulating these isomers were extracted. Conclusions: The experimental data was compared with the theoretical results obtained in the framework of large-scale shell-model (LSSM) calculations in a restricted model space. Modifications of several components of the shell-model interaction were introduced to obtain a consistent agreement with the excitation energies and the B(E2) transition probabilities in neutron-rich Sn and Sb isotopes. The isomeric configurations in Sn and Sb were found to be relatively pure. Furthermore, the calculations revealed that the presence of a single valence proton, mainly in the g(7/2) orbital in Sb isotopes, leads to significant mixing (due to the v pi interaction) of (i) the neutron seniorities (upsilon(v)) and (ii) the neutron angular momentum (I-v). The above features have a weak impact on the excitation energies, but have an important impact on the B(E2) transition probabilities. In addition, a constancy of the relative excitation energies irrespective of neutron seniority and neutron number in Sn and Sb was observed.
  •  
7.
  • Perez-Vidal, R. M., et al. (author)
  • Evidence of Partial Seniority Conservation in the pi g9/2 Shell for the N=50 Isotones
  • 2022
  • In: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 129:11
  • Journal article (peer-reviewed)abstract
    • The reduced transition probabilities for the 4+1 -2+1 and 2+1 -0+1 transitions in 92Mo and 94Ru and for the 4+1 -2+1 and 6+1 -4+1 transitions in 90Zr have been determined in this experiment making use of a multinucleon transfer reaction. These results have been interpreted on the basis of realistic shell-model calculations in the f5=2, p3=2, p1=2, and g9=2 proton valence space. Only the combination of extensive lifetime information and large scale shell-model calculations allowed the extent of the seniority conservation in the N = 50 g9=2 orbital to be understood. The conclusion is that seniority is largely conserved in the first 71g9=2 orbital.
  •  
8.
  • Zanon, I., et al. (author)
  • High-Precision Spectroscopy of 20O Benchmarking Ab Initio Calculations in Light Nuclei
  • 2023
  • In: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 131:26
  • Journal article (peer-reviewed)abstract
    • The excited states of unstable 20O were investigated via γ-ray spectroscopy following the 19O(d,p)20O reaction at 8  AMeV. By exploiting the Doppler shift attenuation method, the lifetimes of the 2+2 and 3+1 states were firmly established. From the γ-ray branching and E2/M1 mixing ratios for transitions deexciting the 2+2 and 3+1 states, the B(E2) and B(M1) were determined. Various chiral effective field theory Hamiltonians, describing the nuclear properties beyond ground states, along with a standard USDB interaction, were compared with the experimentally obtained data. Such a comparison for a large set of γ-ray transition probabilities with the valence space in medium similarity renormalization group ab initio calculations was performed for the first time in a nucleus far from stability. It was shown that the ab initio approaches using chiral effective field theory forces are challenged by detailed high-precision spectroscopic properties of nuclei. The reduced transition probabilities were found to be a very constraining test of the performance of the ab initio models.
  •  
9.
  • Avigo, R., et al. (author)
  • Low-lying electric dipole gamma-continuum for the unstable Fe-62,64 nuclei : Strength evolution with neutron number
  • 2020
  • In: Physics Letters B. - : ELSEVIER. - 0370-2693 .- 1873-2445. ; 811
  • Journal article (peer-reviewed)abstract
    • The gamma-ray emission from the nuclei Fe-62,Fe-64 following Coulomb excitation at bombarding energy of 400-440 AMeV was measured with special focus on E1 transitions in the energy region 4-8 MeV. The unstable neutron-rich nuclei Fe-62,Fe-64 were produced at the FAIR-GSI laboratories and selected with the FRS spectrometer. The gamma decay was detected with AGATA. From the measured gamma-ray spectra the summed E1 strength is extracted and compared to microscopic quasi-particle phonon model calculations. The trend of the E1 strength with increasing neutron number is found to be fairly well reproduced with calculations that assume a rather complex structure of the 1(-) states (three-phonon states) inducing a strong fragmentation of the E1 nuclear response below the neutron binding energy.
  •  
10.
  • Delafosse, C., et al. (author)
  • Pseudospin Symmetry and Microscopic Origin of Shape Coexistence in the Ni-78 Region : A Hint from Lifetime Measurements
  • 2018
  • In: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 121:19
  • Journal article (peer-reviewed)abstract
    • Lifetime measurements of excited states of the light N = 52 isotones Kr-88, Se-86, and Ge-84 have been performed, using the recoil distance Doppler shift method and VAMOS and AGATA spectrometers for particle identification and gamma spectroscopy, respectively. The reduced electric quadrupole transition probabilities B(E2; 2(+)-> 0(+)) and B(E2; 4(+)-> 2(+)) were obtained for the first time for the hard-to-reach 84Ge. While the B(E2; 2(+)-> 0(+) ) values of Kr-88, Se-86 saturate the maximum quadrupole collectivity offered by the natural valence (3s, 2d, 1g(7/2), 1h(11/2)) space of an inert Ni-78 core, the value obtained for Ge-84 largely exceeds it, suggesting that shape coexistence phenomena, previously reported at N less than or similar to 49, extend beyond N = 50. The onset of collectivity at Z = 32 is understood as due to a pseudo-SU(3) organization of the proton single-particle sequence reflecting a clear manifestation of pseudospin symmetry. It is realized that the latter provides actually reliable guidance for understanding the observed proton and neutron single particle structure in the whole medium-mass region, from Ni to Sn, pointing towards the important role of the isovector-vector rho field in shell-structure evolution.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view