SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Harris Michael) ;lar1:(cth)"

Search: WFRF:(Harris Michael) > Chalmers University of Technology

  • Result 1-10 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Harpham, Michael R., et al. (author)
  • X-ray Transient Absorption and Picosecond IR Spectroscopy of Fulvalene(tetracarbonyl)diruthenium on Photoexcitation
  • 2012
  • In: Angewandte Chemie - International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 51:31, s. 7692-7696
  • Journal article (peer-reviewed)abstract
    • Caught in the light: The fulvalene diruthenium complex shown on the left side of the picture captures sun light, causing initial Ru–Ru bond rupture to furnish a long-lived triplet biradical of syn configuration. This species requires thermal activation to reach a crossing point (middle) into the singlet manifold on route to its thermal storage isomer on the right through the anti biradical.
  •  
2.
  • Bombarda, F., et al. (author)
  • Runaway electron beam control
  • 2019
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Journal article (peer-reviewed)
  •  
3.
  • Brannan, Michael, et al. (author)
  • Quantum no-signalling bicorrelations
  • 2024
  • In: Advances in Mathematics. - 1090-2082 .- 0001-8708. ; 449
  • Journal article (peer-reviewed)abstract
    • We introduce classical and quantum no-signalling bicorrelations and characterise the different types thereof in terms of states on operator system tensor products, exhibiting connections with bistochastic operator matrices and with dilations of quantum magic squares. We define concurrent bicorrelations as a quantum input-output generalisation of bisynchronous correlations. We show that concurrent bicorrelations of quantum commuting type correspond to tracial states on the universal C*-algebra of the projective free unitary quantum group, showing that in the quantum input-output setup, quantum permutations of finite sets must be replaced by quantum automorphisms of matrix algebras. We apply our results to study the quantum graph isomorphism game, describing the game C*-algebra in this case, and make precise connections with the algebraic notions of quantum graph isomorphism, existing presently in the literature.
  •  
4.
  • Brannan, Michael, et al. (author)
  • Synchronicity for quantum non-local games
  • 2023
  • In: Journal of Functional Analysis. - : Elsevier BV. - 0022-1236 .- 1096-0783. ; 284:2
  • Journal article (peer-reviewed)abstract
    • We introduce concurrent quantum non-local games, quantum output mirror games and concurrent classical-to-quantum non-local games, as quantum versions of synchronous non-local games, and provide tracial characterisations of their perfect strategies belonging to various correlation classes. We define *-algebras and C*-algebras of concurrent classical-to-quantum and concurrent quantum non-local games, and algebraic versions of the orthogonal rank of a graph. We show that quantum homomorphisms of quantum graphs can be viewed as entanglement assisted classical homomorphisms of the graphs, and give descriptions of the perfect quantum commuting and the perfect approximately quantum strategies for the quantum graph homomorphism game. We specialise the latter results to the case where the inputs of the game are based on a classical graph.
  •  
5.
  •  
6.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
7.
  • Harris, J. Milton, et al. (author)
  • Tuning drug release from polyoxazoline-drug conjugates
  • 2019
  • In: European Polymer Journal. - : Elsevier BV. - 0014-3057. ; 120
  • Research review (peer-reviewed)abstract
    • Poly(2-oxazoline)-drug conjugates with drugs attached via releasable linkages are being developed for drug delivery. Such conjugates with pendent ester linkages that covalently bind drugs to the polymer backbone exhibit significantly slower hydrolytic release rates in plasma than the corresponding PEG- and dextran-drug conjugates. The slow drug release rates in-vitro of these POZ-drug conjugates contribute to extended in-vivo pharmacokinetic profiles. In some instances, the release kinetics may be relatively sustained and ideal for once-a-week subcutaneous injection, whereas the native drug by itself may only have an in-vivo half-life of a few hours. The origin of this unusual kinetic and pharmacokinetic behavior is proposed here to involve folding of the POZ conjugate such that the relatively hydrophobic drug forms a central core, and the relatively hydrophilic polymer wraps around the core and slows enzymatic attack on the drug-polymer chemical linkage. Here we present evidence supporting this hypothesis and demonstrate how the hypothesis can be used to tune hydrolytic release rates and pharmacokinetics. Evidence for the folding hypothesis is taken from hydrolysis kinetics of a range of drugs in plasma, pharmacokinetics of a range of drugs following subcutaneous injection in laboratory animals, and nuclear magnetic resonance (NMR) studies showing folding of the POZ-rotigotine molecule. The drugs included in this study to test the hypothesis are: rotigotine, buprenorphine, dexanabinol, cannabidiol (CBD), Delta(9)-tetrahydrocannabinol (THC) and cannabigerol (CBG).
  •  
8.
  • Joffrin, E., et al. (author)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Research review (peer-reviewed)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
9.
  • Murari, A., et al. (author)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • In: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view