SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hartley M) ;pers:(Campbell D B)"

Sökning: WFRF:(Hartley M) > Campbell D B

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Riley, M A, et al. (författare)
  • Beyond band termination in Er-157 and the search for wobbling excitations in strongly deformed Hf-174
  • 2005
  • Ingår i: Journal of Physics G: Nuclear and Particle Physics. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 31:10, s. 1735-1740
  • Tidskriftsartikel (refereegranskat)abstract
    • High-spin terminating bands in heavy nuclei were first identified in nuclei around Er-158(90). While examples of special terminating states have been identified in a number of erbium isotopes, almost nothing is known about the states lying beyond band termination. In the present work the high-spin structure of Er-157 has been studied using the Gammasphere spectrometer. The subject of triaxial superdeformation and 'wobbling' modes in Lu nuclei has rightly attracted a great deal of attention. Very recently, four strongly or superdeformed (SD) sequences have been observed in Hf-174 and ultimate cranker calculations predict, such structures may have significant triaxial deformation. We have performed two experiments in an attempt to verify the possible triaxial nature of these bands. A lifetime measurement was performed to confirm the large (and similar) deformation of the bands. In addition, a high-statistics, thin-target experiment was run to search for linking transitions between the SD bands and possible wobbling modes.
  •  
2.
  • Riley, M. A., et al. (författare)
  • Observation of states beyond band termination in Er-156,Er-157,Er-158 and strongly deformed structures in Hf-173,Hf-174,Hf-175
  • 2006
  • Ingår i: Physica Scripta. - 0031-8949. ; T125, s. 123-126
  • Tidskriftsartikel (refereegranskat)abstract
    • High-spin terminating bands in heavy nuclei were first identified in nuclei around Er-158(90). While examples of terminating states have been identified in a number of erbium isotopes, almost nothing is known about the states lying beyond band termination. In the present work, the high-spin structure of Er-156,Er-157,Er-158 has been studied using the Gammasphere spectrometer. The subject of triaxial superdeformation and 'wobbling' modes in Lu nuclei has rightly attracted a great deal of attention. Very recently four strongly or superdeformed (SD) sequences have been observed in Hf-174, and cranking calculations using the Ultimate Cranker code predict that such structures may have significant triaxial deformation. We have performed two experiments in an attempt to verify the possible triaxial nature of these bands. A lifetime measurement was performed to confirm the large (and similar) deformation of the bands. In addition, a high-statistics, thin-target experiment took place to search for linking transitions between the SD bands, possible wobbling modes, and new SD band structures.
  •  
3.
  • Riley, M. A., et al. (författare)
  • Strongly Deformed Nuclear Shapes at Ultra-High Spin and Shape Coexistence in N\sim 90 Nuclei
  • 2009
  • Ingår i: Acta Physica Polonica B. - 0587-4254. ; 40:3, s. 513-522
  • Tidskriftsartikel (refereegranskat)abstract
    • The N similar to 90 region of the nuclear chart has featured prominently as the spectroscopy of nuclei at extreme spin has progressed. This talk will present recent discoveries from investigations of high spin behavior in the N similar to 90 Er, Tm and Yb nuclei utilizing the Gammasphere gamma-ray spectrometer. In particular it will include discussion of the beautiful shape evolution and coexistence observed in these nuclei along with the identification of a remarkable new family of band structures. The latter are very weakly populated rotational sequences with high moment of inertia that bypass the classic terminating configurations near spin 40-50 (h) over bar, marking a return to collectivity that extends discrete gamma-ray spectroscopy to well over 60 (h) over bar. Establishing the nature of the yrast states in these nuclei beyond the oblate band-termination states has been a major goal for the past two decades. Cranking calculations suggest that these new structures most likely represent stable triaxial strongly deformed bands that lie in a valley of favored shell energy in deformation and particle-number space.
  •  
4.
  • Simpson, J., et al. (författare)
  • Evolution of structure and shapes in Er 158 to ultrahigh spin
  • 2023
  • Ingår i: Physical Review C. - 2469-9985. ; 107:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The level structure of Er158 has been studied using the Gammasphere spectrometer via the Cd114(Ca48,4n) reaction at 215 MeV with both thin (self-supporting) and thick (backed) targets. The level scheme has been considerably extended with more than 200 new transitions and six new rotational structures, including two strongly coupled high-K bands. Configuration assignments for the new structures are based on their observed alignments, B(M1)/B(E2) ratios of reduced transition probabilities, excitation energies, and comparisons with neighboring nuclei and theoretical calculations. With increasing angular momentum, this nucleus exhibits Coriolis-induced alignments of both neutrons and protons before it then undergoes a rotation-induced transition from near-prolate collective rotation to a noncollective oblate configuration. This transition occurs via the mechanism of band termination around spin 45ħ in three rotational structures. Two distinct lifetime branches, consistent with the crossing of a collective "fast"rotational structure by an energetically favored "slow"terminating sequence, are confirmed for the positive-parity states, and similar behavior is established in the negative-parity states. Weak-intensity, high-energy transitions are observed to feed into the terminating states. At the highest spins, three collective bands with high dynamic moments of inertia and large quadrupole moments were identified. These bands are interpreted as triaxial strongly deformed structures and mark a return to collectivity at ultrahigh spin.
  •  
5.
  • Aguilar, A, et al. (författare)
  • New shape minimum in Yb-160: Evidence for a triaxial, strongly deformed band
  • 2008
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 77:2, s. 5-021302
  • Tidskriftsartikel (refereegranskat)abstract
    • A high-spin rotational band was observed in the N=90 nucleus Yb-160 with moment of inertia and decay characteristics very similar to recently discovered sequences in Er-157,Er-158. These latter structures were discussed in terms of strongly deformed triaxial bands. Detailed cranked Nilsson-Strutinsky calculations were performed that predict that well-deformed triaxial structures are also expected at high spin in Yb-160. Within this interpretation the observed discontinuity in the dynamic moment of inertia around h omega=0.40-0.45 MeV can be explained as a crossing between i(13/2) neutron levels.
  •  
6.
  • Campbell, D. B., et al. (författare)
  • Rotational structures and their evolution with spin in Gd-152
  • 2007
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 75:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The fusion-evaporation reaction involving a 175 MeV S-36 beam and a Sn-124 target was performed, and the emitted gamma rays were observed with the Gammasphere spectrometer. Significant additions to the level scheme of Gd-152 were made in spite of the relative weakness of the alpha 4n exit channel, being only similar to 2% of the total fusion cross-section. The high-spin behavior of Gd-152 was compared with that of other N=88 nuclei. A striking similarity was observed with Dy-154 and it is therefore suggested that the angular-momentum-induced shape changes that take place in Dy-154 also occur in Gd-152 in the 30-40h spin range. This is supported by Cranked Nilsson-Strutinsky calculations which were used to interpret the high-spin bands. It is found that a better agreement between calculation and experiment is obtained if the Z=64 shell gap increases with a decreasing number of valence particles outside the doubly-closed Gd-146(64)82 nucleus.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy