SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hartley M) ;pers:(Nolan P. J.)"

Sökning: WFRF:(Hartley M) > Nolan P. J.

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Riley, M A, et al. (författare)
  • Beyond band termination in Er-157 and the search for wobbling excitations in strongly deformed Hf-174
  • 2005
  • Ingår i: Journal of Physics G: Nuclear and Particle Physics. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 31:10, s. 1735-1740
  • Tidskriftsartikel (refereegranskat)abstract
    • High-spin terminating bands in heavy nuclei were first identified in nuclei around Er-158(90). While examples of special terminating states have been identified in a number of erbium isotopes, almost nothing is known about the states lying beyond band termination. In the present work the high-spin structure of Er-157 has been studied using the Gammasphere spectrometer. The subject of triaxial superdeformation and 'wobbling' modes in Lu nuclei has rightly attracted a great deal of attention. Very recently, four strongly or superdeformed (SD) sequences have been observed in Hf-174 and ultimate cranker calculations predict, such structures may have significant triaxial deformation. We have performed two experiments in an attempt to verify the possible triaxial nature of these bands. A lifetime measurement was performed to confirm the large (and similar) deformation of the bands. In addition, a high-statistics, thin-target experiment was run to search for linking transitions between the SD bands and possible wobbling modes.
  •  
2.
  • Riley, M. A., et al. (författare)
  • Observation of states beyond band termination in Er-156,Er-157,Er-158 and strongly deformed structures in Hf-173,Hf-174,Hf-175
  • 2006
  • Ingår i: Physica Scripta. - 0031-8949. ; T125, s. 123-126
  • Tidskriftsartikel (refereegranskat)abstract
    • High-spin terminating bands in heavy nuclei were first identified in nuclei around Er-158(90). While examples of terminating states have been identified in a number of erbium isotopes, almost nothing is known about the states lying beyond band termination. In the present work, the high-spin structure of Er-156,Er-157,Er-158 has been studied using the Gammasphere spectrometer. The subject of triaxial superdeformation and 'wobbling' modes in Lu nuclei has rightly attracted a great deal of attention. Very recently four strongly or superdeformed (SD) sequences have been observed in Hf-174, and cranking calculations using the Ultimate Cranker code predict that such structures may have significant triaxial deformation. We have performed two experiments in an attempt to verify the possible triaxial nature of these bands. A lifetime measurement was performed to confirm the large (and similar) deformation of the bands. In addition, a high-statistics, thin-target experiment took place to search for linking transitions between the SD bands, possible wobbling modes, and new SD band structures.
  •  
3.
  • Mustafa, M., et al. (författare)
  • Diverse collective excitations in Er-159 up to high spin
  • 2011
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 84:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A spectroscopic investigation of the gamma decays from excited states in Er-159 has been performed to study the changing structural properties exhibited as ultrahigh spins (I > 60 (h) over bar) are approached. The nucleus of Er-159 was populated by the reaction Cd-116(Ca-48, 5n gamma) at a beam energy of 215 MeV, and the resulting gamma decays were studied using the Gammasphere spectrometer. New rotational bands and extensions to existing sequences were observed, which are discussed in terms of the cranked shell model, revealing a diverse range of quasiparticle configurations. At spins around 50 (h) over bar, there is evidence for a change from dominant prolate collective motion at the yrast line to oblate non-collective structures via the mechanism of band termination. A possible strongly deformed triaxial band occurs at these high spins, which indicates collectivity beyond 50 (h) over bar. The high-spin data are interpreted within the framework of cranked Nilsson-Strutinsky calculations.
  •  
4.
  • Riley, M. A., et al. (författare)
  • Strongly Deformed Nuclear Shapes at Ultra-High Spin and Shape Coexistence in N\sim 90 Nuclei
  • 2009
  • Ingår i: Acta Physica Polonica B. - 0587-4254. ; 40:3, s. 513-522
  • Tidskriftsartikel (refereegranskat)abstract
    • The N similar to 90 region of the nuclear chart has featured prominently as the spectroscopy of nuclei at extreme spin has progressed. This talk will present recent discoveries from investigations of high spin behavior in the N similar to 90 Er, Tm and Yb nuclei utilizing the Gammasphere gamma-ray spectrometer. In particular it will include discussion of the beautiful shape evolution and coexistence observed in these nuclei along with the identification of a remarkable new family of band structures. The latter are very weakly populated rotational sequences with high moment of inertia that bypass the classic terminating configurations near spin 40-50 (h) over bar, marking a return to collectivity that extends discrete gamma-ray spectroscopy to well over 60 (h) over bar. Establishing the nature of the yrast states in these nuclei beyond the oblate band-termination states has been a major goal for the past two decades. Cranking calculations suggest that these new structures most likely represent stable triaxial strongly deformed bands that lie in a valley of favored shell energy in deformation and particle-number space.
  •  
5.
  • Simpson, J., et al. (författare)
  • Evolution of structure and shapes in Er 158 to ultrahigh spin
  • 2023
  • Ingår i: Physical Review C. - 2469-9985. ; 107:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The level structure of Er158 has been studied using the Gammasphere spectrometer via the Cd114(Ca48,4n) reaction at 215 MeV with both thin (self-supporting) and thick (backed) targets. The level scheme has been considerably extended with more than 200 new transitions and six new rotational structures, including two strongly coupled high-K bands. Configuration assignments for the new structures are based on their observed alignments, B(M1)/B(E2) ratios of reduced transition probabilities, excitation energies, and comparisons with neighboring nuclei and theoretical calculations. With increasing angular momentum, this nucleus exhibits Coriolis-induced alignments of both neutrons and protons before it then undergoes a rotation-induced transition from near-prolate collective rotation to a noncollective oblate configuration. This transition occurs via the mechanism of band termination around spin 45ħ in three rotational structures. Two distinct lifetime branches, consistent with the crossing of a collective "fast"rotational structure by an energetically favored "slow"terminating sequence, are confirmed for the positive-parity states, and similar behavior is established in the negative-parity states. Weak-intensity, high-energy transitions are observed to feed into the terminating states. At the highest spins, three collective bands with high dynamic moments of inertia and large quadrupole moments were identified. These bands are interpreted as triaxial strongly deformed structures and mark a return to collectivity at ultrahigh spin.
  •  
6.
  • Wang, X., et al. (författare)
  • Collective structures up to spin ∼ 65h in the N 90 isotones 158Er and 157Ho
  • 2012
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 381:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A new collective band with high dynamic moment of inertia in 158Er at spins beyond band termination has been found in addition to the two previously reported ones. The measured transition quadrupole moments (Qt) of these three bands are very similar. These three bands have been suggested to possess a triaxial strongly deformed shape, based on comparisons with calculations using the cranked Nilsson-Strutinsky model and with tilted axis cranking calculations using the Skyrme-Hartree-Fock model. In addition, three collective bands with similar high dynamic moments of inertia, tentatively assigned to 157Ho, have been observed. Thus, it is suggested that all these structures share a common underlying character and that they are most likely associated with triaxial strongly deformed minima which are predicted to be close to the yrast line at spin 50 - 70h.
  •  
7.
  • Hartley, D. J., et al. (författare)
  • Persistence of collective behavior at high spin in the N=88 nucleus Tb-153
  • 2015
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 91:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Excited states in the N = 88 nucleus Tb-153 were observed up to spin similar to 40 in an experiment utilizing the Gammasphere array. The Tb-153 states were populated in a weak alpha 4n evaporation channel of the Cl-37 + Sn-124 reaction. Two previously known sequences were extended to higher spins, and a new decoupled structure was identified. The pi h(11/2) band was observed in the spin region where other N = 88 isotopes exhibit effects of prolate to oblate shape changes leading to band termination along the yrast line, whereas Tb-153 displays a persistent collective behavior. However, minor perturbations of the very highest state in both signatures of this h(11/2) band are observed, which perhaps signal the start of the transition towards band termination.
  •  
8.
  • Ollier, J., et al. (författare)
  • Structure changes in Er-160 from low to ultrahigh spin
  • 2011
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 83:4
  • Tidskriftsartikel (refereegranskat)abstract
    • A spectroscopic investigation of the gamma decays from excited states in Er-160 has been performed in order to study the changing structural properties exhibited from low spin up toward ultrahigh spin (I similar to 60 h). The nucleus Er-160 was populated by the reaction Cd-116(Ca-48,4n gamma) at a beam energy of 215 MeV, and resulting gamma decays were studied using the Gammasphere spectrometer. New rotational structures and extensions to existing bands were observed, revealing a diverse range of quasiparticle configurations, which are discussed in terms of the cranked shell model. At spins around 50h there is evidence for oblate states close to the yrast line. Three rotational bands that have the characteristics of strongly deformed triaxial structures are observed, marking a return to collectivity at even higher spin. The high-spin data are interpreted within the framework of cranked Nilsson-Strutinsky calculations.
  •  
9.
  • Paul, E. S., et al. (författare)
  • Recent Results at Ultrahigh Spin: Terminating States and Beyond in Mass 160 Rare-earth Nuclei
  • 2015
  • Ingår i: Acta Physica Polonica. Series B: Elementary Particle Physics, Nuclear Physics, Statistical Physics, Theory of Relativity, Field Theory. - 0587-4254. ; 46:3, s. 487-496
  • Tidskriftsartikel (refereegranskat)abstract
    • A classic region of band termination at high spin occurs in rare-earth nuclei with around ten valence nucleons above the Gd-146 closed core. Results are presented here for such non-collective oblate (gamma = 60 degrees) terminating states in odd-Z Ho-155, odd-odd Ho-156, and even-even Er-156, where they are compared with neighbouring nuclei. In addition to these particularly favoured states, the occurrence of collective triaxial strongly deformed (TSD) bands, bypassing the terminating states and extending to over 65 (h) over bar, is reviewed.
  •  
10.
  • Pfohl, J., et al. (författare)
  • Highly deformed rotational structures in 136Pm
  • 2000
  • Ingår i: Physical Review C - Nuclear Physics. - 0556-2813. ; 62:3, s. 313041-313045
  • Tidskriftsartikel (refereegranskat)abstract
    • Four highly deformed structures in the odd-odd nucleus 13661Pm75 were observed via the 105Pd(35Cl,2p2n) reaction at 180 and 173 MeV using the GAMMASPHERE γ-ray spectrometer and the Microball charged-particle detector array. Quadrupole moment measurements were performed on all of the bands. In contrast to lighter odd-Ζ Pm and Pr nuclei, bands based on the g9/2[404]9/2 proton orbital were not observed. Instead, the four observed sequences are assigned as a coupling of an i13/2 neutron with the low-Ω h11/2 and mixed d5/2g7/2 orbitals. Comparisons with neighboring highly deformed structures are discussed and cranked Nilsson-Strutinsky calculations for 136Pm are presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy