SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hases Linnea) ;lar1:(ki)"

Sökning: WFRF:(Hases Linnea) > Karolinska Institutet

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Danielsson, Frida, et al. (författare)
  • Transcriptome profiling of the interconnection of pathways involved in malignant transformation and response to hypoxia
  • 2018
  • Ingår i: Oncotarget. - : Impact Journals LLC. - 1949-2553. ; 9:28, s. 19730-19744
  • Tidskriftsartikel (refereegranskat)abstract
    • In tumor tissues, hypoxia is a commonly observed feature resulting from rapidly proliferating cancer cells outgrowing their surrounding vasculature network. Transformed cancer cells are known to exhibit phenotypic alterations, enabling continuous proliferation despite a limited oxygen supply. The four-step isogenic BJ cell model enables studies of defined steps of tumorigenesis: the normal, immortalized, transformed, and metastasizing stages. By transcriptome profiling under atmospheric and moderate hypoxic (3% O2) conditions, we observed that despite being highly similar, the four cell lines of the BJ model responded strikingly different to hypoxia. Besides corroborating many of the known responses to hypoxia, we demonstrate that the transcriptome adaptation to moderate hypoxia resembles the process of malignant transformation. The transformed cells displayed a distinct capability of metabolic switching, reflected in reversed gene expression patterns for several genes involved in oxidative phosphorylation and glycolytic pathways. By profiling the stage-specific responses to hypoxia, we identified ASS1 as a potential prognostic marker in hypoxic tumors. This study demonstrates the usefulness of the BJ cell model for highlighting the interconnection of pathways involved in malignant transformation and hypoxic response.
  •  
2.
  • Hases, Linnea, et al. (författare)
  • Colitis Induces Sex-Specific Intestinal Transcriptomic Responses in Mice
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 23:18, s. 10408-
  • Tidskriftsartikel (refereegranskat)abstract
    • There are significant sex differences in colorectal cancer (CRC), including in incidence, onset, and molecular characteristics. Further, while inflammatory bowel disease (IBD) is a risk factor for CRC in both sexes, men with IBD have a 60% higher risk of developing CRC compared to women. In this study, we investigated sex differences during colitis-associated CRC (CAC) using a chemically induced CAC mouse model. The mice were treated with azoxymethane (AOM) and dextran sodium sulfate (DSS) and followed for 9 and 15 weeks. We performed RNA-sequencing of colon samples from males (n = 15) and females (n = 15) to study different stages of inflammation and identify corresponding transcriptomic sex differences in non-tumor colon tissue. We found a significant transcriptome response to AOM/DSS treatment in both sexes, including in pathways related to inflammation and cell proliferation. Notably, we found a stronger response in males and that male-specific differentially expressed genes were involved in NF kappa B signaling and circadian rhythm. Further, an overrepresented proportion of male-specific gene regulations were predicted to be targets of Stat3, whereas for females, targets of the glucocorticoid receptor (Gr/Nr3c1) were overrepresented. At 15 weeks, the most apparent sex difference involved genes with functions in T cell proliferation, followed by the regulation of demethylases. The majority of sex differences were thus related to inflammation and the immune system. Our novel data, profiling the transcriptomic response to chemically induced colitis and CAC, indicate clear sex differences in CRC initiation and progression.
  •  
3.
  • Hases, Linnea, et al. (författare)
  • ERβ and Inflammation
  • 2022
  • Ingår i: Advances in Experimental Medicine and Biology. - Cham : Springer Nature. ; 1390, s. 213-225
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Estrogen, through the regulation of cytokine production, can act both as pro-inflammatory and anti-inflammatory signals dependent on the tissue context. In breast cancer cells, ERα is known to modulate inflammatory signaling through interaction with NFκB. Whether ERβ has a role in inflammation is less explored. Low levels of ERβ have been corroborated in several immune-related organs and, for example, in colonic epithelial cells. Specifically, an impact of ERβ on colitis and colitis-associated colorectal cancer (CRC) is experimentally supported, using ERβ-selective agonists, full-body ERβ knockout mice and, most recently, intestinal epithelial-specific knockout mice. An intricate crosstalk between ERβ and TNFα/NFκB signaling in the colon is supported, and ERβ activation appears to reduce macrophage infiltration also during high fat diet (HFD)-induced colon inflammation. Finally, the gut microbiota plays a fundamental role in the pathogenesis of colitis and ERβ has been indicated to modulate the microbiota diversity during colitis and colitis-induced CRC. ERβ is thus proposed to protect against colitis, by modulating NFκB signaling, immune cell infiltration, and/or microbiota composition. Selective activation of ERβ may therefore constitute a suitable preventative approach for the treatment of for example colitis-associated CRC. 
  •  
4.
  • Hases, Linnea (författare)
  • Estrogen signaling in colon inflammation and colorectal cancer
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Colorectal cancer (CRC) is the third most deadly form of cancer in the Western world. Although screening efforts have reduced the overall mortality, the incidence is increasing among young adults. The frequency of inflammatory bowel disease (IBD) and obesity are increasing in parallel, which suggest a common underlying environmental link between the conditions. This increase is thought to correlate to an increased intake of high fat diets, and obesity is a major risk factor for CRC. Chronic inflammation, which is a hallmark for CRC promotion, is a well-known underlying factor in both obesity and IBD. The gut microbiota is another hallmark, and an impaired relationship between the host and gut microbes can contribute to obesity, IBD and CRC. The risk-benefit balance of current CRC-preventative treatments is poor, and there is a need for safer and better preventatives in order to reduce the CRC mortality. Both obesity and IBD place men at a significant higher risk of CRC compared to women. This indicates a protective role for estrogen. The use of full Estrogen receptor (ER) β knockout mice has demonstrated ERβ protective effects against experimentally induced CRC. However, it is unknown through which cells these protective effects are mediated. There are only low mRNA levels of ERβ in the colon, unclear if adequate for a functional role, and ERβ may also be expressed in intestinal immune cells. Understanding the CRC-preventative effects of intestinal epithelial ERβ in both sexes is important and may provide the background for a novel CRC chemopreventive approach.The overall aim of the thesis is the functional characterization of intestinal epithelial ERβ during colon inflammation and colitis-induced CRC and identification of potential sex differences, which can ultimately provide novel opportunities for chemopreventive exploitation (Figure 1). In paper I we utilized intestinal epithelial ERβ knockout mice (ERβKOVil) of both sexes and induced colitis and colitis associated CRC (CA-CRC). We found that intestinal epithelial ERβ is protective against colitis and CA-CRC in both sexes, but in a sex-dependent manner. The underlying mechanism includes an intricate crosstalk with TNFα-induced NFκB signaling.In paper II we identify that both sex and intestinal epithelial ERβ impact the microbiota composition. This may contribute to the exacerbated colitis and colitis-induced tumor formation observed in ERβKOVil mice.In paper III we induced colon inflammation by feeding the mice a high-fat diet (HFD, 60%) for 13 weeks and explored treatment with estrogen receptor-selective ligands. We identified that estrogen signaling, via ERβ, modulated the HFD-induced changes in the colon microenvironment. This included sex-dependent effects on epithelial cell proliferation, macrophage infiltration, and regulation of core circadian clock gene expression.In paper IV we utilized paired-normal and CRC clinical samples and identified sex differences in the transcriptome of both normal colon and CRC. By applying data-driven feature selection and machine learning on sex-separated TCGA data, we proposed sex-specific diagnostic biomarkers and prognostic biomarkers using survival analysis. In summary, this thesis characterizes intestinal epithelial ERβ as a novel chemopreventative target for CA-CRC in both sexes, and identifies related biological pathways, including crosstalk with nuclear factor κB (NFκB) signaling and modulation of circadian clock genes. ERβ activity in intestinal epithelial cells is manifested by altered microbiota composition, cell proliferation and immune cell infiltration. The identification of several significant sex differences provides evidence for the need to take sex into account in colitis and CRC research to improve health interventions.
  •  
5.
  • Hases, Linnea, et al. (författare)
  • High-fat diet and estrogen impacts the colon and its transcriptome in a sex-dependent manner
  • 2020
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a strong association between obesity and colorectal cancer (CRC), especially in men, whereas estrogen protects against both the metabolic syndrome and CRC. Colon is the first organ to respond to high-fat diet (HFD), and estrogen receptor beta (ERβ) can attenuate CRC development. How estrogen impacts the colon under HFD and related sex differences has, however, not been investigated. To dissect this, mice were fed control diet or HFD for 13 weeks and administered receptor-selective estrogenic ligands for the last three weeks. We recorded impact on metabolism, colon crypt proliferation, macrophage infiltration, and the colon transcriptome. We found clear sex differences in the colon transcriptome and in the impact by HFD and estrogens, including on clock genes. ERα-selective activation reduced body weight and generated systemic effects, whereas ERβ-selective activation had local effects in the colon, attenuating HFD-induced macrophage infiltration and epithelial cell proliferation. We here demonstrate how HFD and estrogens modulate the colon microenvironment in a sex- and ER-specific manner.
  •  
6.
  • Hases, Linnea, et al. (författare)
  • High-fat diet and estrogen modulate the gut microbiota in a sex-dependent manner in mice
  • 2023
  • Ingår i: Communications Biology. - : Springer Nature. - 2399-3642. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A high-fat diet can lead to gut microbiota dysbiosis, chronic intestinal inflammation, and metabolic syndrome. Notably, resulting phenotypes, such as glucose and insulin levels, colonic crypt cell proliferation, and macrophage infiltration, exhibit sex differences, and females are less affected. This is, in part, attributed to sex hormones. To investigate if there are sex differences in the microbiota and if estrogenic ligands can attenuate high-fat diet-induced dysbiosis, we used whole-genome shotgun sequencing to characterize the impact of diet, sex, and estrogenic ligands on the microbial composition of the cecal content of mice. We here report clear host sex differences along with remarkably sex-dependent responses to high-fat diet. Females, specifically, exhibited increased abundance of Blautia hansenii, and its levels correlated negatively with insulin levels in both sexes. Estrogen treatment had a modest impact on the microbiota diversity but altered a few important species in males. This included Collinsella aerofaciens F, which we show correlated with colonic macrophage infiltration. In conclusion, male and female mice exhibit clear differences in their cecal microbial composition and in how diet and estrogens impact the composition. Further, specific microbial strains are significantly correlated with metabolic parameters.
  •  
7.
  •  
8.
  • Hases, Linnea, et al. (författare)
  • Intestinal estrogen receptor beta suppresses colon inflammation andtumorigenesis in both sexes
  • 2020
  • Ingår i: Cancer Letters. - : Elsevier BV. - 0304-3835 .- 1872-7980. ; 492, s. 54-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen hormones protect against colorectal cancer (CRC) and a preventative role of estrogen receptor beta (ERβ) on CRC has been supported using full knockout animals. However, it is unclear through which cells or organ ERβ mediates this effect. To investigate the functional role of intestinal ERβ during colitis-associated CRC we used intestine-specific ERβ knockout mice treated with azoxymethane and dextran sodium sulfate, followed by ex vivo organoid culture to corroborate intrinsic effects. We explored genome-wide impact on TNFα signaling using human CRC cell lines and chromatin immunoprecipitation assay to mechanistically characterize the regulation of ERβ. Increased tumor formation in males and tumor size in females was noted upon intestine-specific ERβ knockout, accompanied by enhanced local expression of TNFα, deregulation of key NFκB targets, and increased colon ulceration. Unexpectedly, we noted especially strong effects in males. We corroborated that intestinal ERβ protects against TNFα-induced damage intrinsically, and characterized an underlying genome-wide signaling mechanism in CRC cell lines whereby ERβ binds to cis-regulatory chromatin areas of key NFκB regulators. Our results support a protective role of intestinal ERβ against colitis-associated CRC, proposing new therapeutic strategies.
  •  
9.
  • Hases, Linnea, et al. (författare)
  • The Importance of Sex in the Discovery of Colorectal Cancer Prognostic Biomarkers
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 22:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Colorectal cancer (CRC) is the third leading cause of cancer deaths. Advances within bioinformatics, such as machine learning, can improve biomarker discovery and ultimately improve CRC survival rates. There are clear sex differences in CRC characteristics, but the impact of sex has not been considered with regards to CRC biomarkers. Our aim here was to investigate sex differences in the transcriptome of a normal colon and CRC, and between paired normal and tumor tissue. Next, we attempted to identify CRC diagnostic and prognostic biomarkers and investigate if they are sex-specific. We collected paired normal and tumor tissue, performed RNA-seq, and applied feature selection in combination with machine learning to identify the top CRC diagnostic biomarkers. We used The Cancer Genome Atlas (TCGA) data to identify sex-specific CRC diagnostic biomarkers and performed an overall survival analysis to identify sex-specific prognostic biomarkers. We found transcriptomic sex differences in both the normal colon tissue and in CRC. Forty-four of the top-ranked biomarkers were sex-specific and 20 biomarkers showed a sex-specific prognostic value. Our data show the importance of sex in the discovery of CRC biomarkers. We propose 20 sex-specific CRC prognostic biomarkers, including ESM1, GUCA2A, and VWA2 for males and CLDN1 and FUT1 for females.
  •  
10.
  • Ibrahim, Ahmed, et al. (författare)
  • Colitis-induced colorectal cancer and intestinal epithelial estrogen receptor beta impact gut microbiota diversity
  • 2019
  • Ingår i: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 144:12, s. 3086-3098
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic inflammation of the colon (colitis) is a risk factor for colorectal cancer (CRC). Hormone-replacement therapy reduces CRC incidences, and the estrogen receptor beta (ERβ/ESR2) has been implicated in this protection. Gut microbiota is altered in both colitis and CRC and may influence the severity of both. Here we test the hypothesis that intestinal ERβ impacts the gut microbiota. Mice with and without intestine-specific deletion of ERβ (ERβKOVil ) were generated using the Cre-LoxP system. Colitis and CRC were induced with a single intraperitoneal injection of azoxymethane (AOM) followed by administration of three cycles of dextran sulfate sodium (DSS) in drinking water. The microbiota population were characterized by high-throughput 16S rRNA gene sequencing of DNA extracted from fecal samples (N = 39). Differences in the microbiota due to AOM/DSS and absence of ERβ were identified through bioinformatic analyses of the 16S-Seq data, and the distribution of bacterial species was corroborated using qPCR. We demonstrate that colitis-induced CRC reduced the gut microbiota diversity and that loss of ERβ enhanced this process. Further, the Bacteroidetes genus Prevotellaceae_UCG_001 was overrepresented in AOM/DSS mice compared to untreated controls (3.5-fold, p = 0.004), and this was enhanced in females and in ERβKOVil mice. Overall, AOM/DSS enriched for microbiota impacting immune system diseases and metabolic functions, and lack of ERβ in combination with AOM/DSS enriched for microbiota impacting carbohydrate metabolism and cell motility, while reducing those impacting the endocrine system. Our data support that intestinal ERβ contributes to a more favorable microbiome that could attenuate CRC development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
Typ av publikation
tidskriftsartikel (12)
doktorsavhandling (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (11)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Hases, Linnea (14)
Williams, Cecilia, P ... (13)
Archer, Amena (8)
Indukuri, Rajitha (6)
Birgersson, Madelein ... (5)
Hartman, Johan (3)
visa fler...
Ibrahim, Ahmed (3)
Saxena, Ashish (3)
Engstrand, Lars (2)
Lozano, Rodrigo (2)
Gustafsson, Jan-Åke (2)
Katajisto, Pekka (2)
Jafferali, Mohammed ... (2)
Zhao, Chunyan (2)
Nguyen-Vu, Trang (2)
Frasor, Jonna (2)
Archer, A. (1)
Al-Khalili Szigyarto ... (1)
Mardinoglu, Adil (1)
Uhlén, Mathias (1)
Zhang, Cheng (1)
Lundberg, Emma (1)
Williams, Cecilia, 1 ... (1)
Hugerth, Luisa W. (1)
Rüegg, Joelle (1)
Danielsson, Frida (1)
Schuppe-Koistinen, I ... (1)
Gustafsson, Jan-Ake (1)
Zhao, Yang (1)
Lin, Chin-Yo (1)
Haldosén, Lars-Arne (1)
Wang, Jing (1)
Sanli, Kemal (1)
Berkenstam, Anders (1)
DiLorenzo, Sebastian (1)
Stepanauskaite, Lina (1)
Seifert, Maike (1)
Damdimopoulos, Anast ... (1)
Brusselaers, Nele (1)
Chen, Xinsong (1)
Kim, Michael (1)
Fasterius, Erik (1)
Sullivan, Devin (1)
Huss, M. (1)
Sinha, Indranil (1)
Savva, Christina (1)
Korach-Andre, Marion (1)
Liu, Yanghong (1)
He, Huan (1)
Thomas, Quentin Ange ... (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (14)
Uppsala universitet (1)
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (13)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy