SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hattersley Andrew T.) "

Sökning: WFRF:(Hattersley Andrew T.)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Saxena, Richa, et al. (författare)
  • Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge
  • 2010
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 42:2, s. 75-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958-30,620). We identify variants at the GIPR locus associated with 2- h glucose level (rs10423928, beta (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 x 10(-15)). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 x 10(-17); ratio of insulin to glucose area under the curve, P = 1.3 x 10(-16)) and diminished incretin effect (n = 804; P = 4.3 x 10(-4)). We also identified variants at ADCY5 (rs2877716, P = 4.2 x 10(-16)), VPS13C (rs17271305, P = 4.1 x 10(-8)), GCKR (rs1260326, P = 7.1 x 10(-11)) and TCF7L2 (rs7903146, P = 4.2 x 10(-10)) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09-1.15, P = 4.8 x 10(-18)).
  •  
2.
  • Gaulton, Kyle J, et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 47:12, s. 1415-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
3.
  • Morris, Andrew P., et al. (författare)
  • Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes
  • 2012
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 44:9, s. 981-981
  • Tidskriftsartikel (refereegranskat)abstract
    • To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip, including 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two showing sex-differentiated association. Genomewide analyses of these data are consistent with a long tail of additional common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signaling and cell cycle regulation, in diabetes pathogenesis.
  •  
4.
  • Locke, Adam E., et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology
  • 2015
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-U401
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in upto 339,224 individuals. This analysis identifies 97 BMI-associated loci (P &lt; 5 x 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for similar to 2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for &gt;20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous systemin obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.</p>
  •  
5.
  • Dupuis, Josee, et al. (författare)
  • New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk
  • 2010
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 42:2, s. 32-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes.
  •  
6.
  • Heid, Iris M., et al. (författare)
  • Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution.
  • 2010
  • Ingår i: Nature genetics. - 1546-1718. ; 42:11, s. 949-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 x 10(-9) to P = 1.8 x 10(-40)) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 x 10(-3) to P = 1.2 x 10(-13)). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
  •  
7.
  • Locke, Adam E, et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • Ingår i: Nature. - Nature Publishing Group. - 0028-0836. ; 518:7538, s. 197-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
8.
  • Locke, Adam E, et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology
  • 2015
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-206
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (<em>P</em> &lt; 5 × 10<sup>−8</sup>), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ~2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for &gt;20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.</p>
  •  
9.
  • Turcot, Valerie, et al. (författare)
  • Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity
  • 2018
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:1, s. 26-41
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Genome-wide association studies (GWAS) have identified &gt;250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) &lt; 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are similar to 10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed similar to 7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.</p>
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
Åtkomst
fritt online (22)
Typ av publikation
tidskriftsartikel (93)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (93)
övrigt vetenskapligt (1)
Författare/redaktör
Hattersley, Andrew T (91)
McCarthy, Mark I (61)
Frayling, Timothy M. (60)
Kuusisto, Johanna, (59)
Collins, Francis S. (58)
Laakso, Markku, (56)
visa fler...
Langenberg, Claudia (56)
Jackson, Anne U. (55)
Prokopenko, Inga (54)
Morris, Andrew P. (54)
Stringham, Heather M ... (53)
Wareham, Nicholas J (52)
Hansen, Torben, (52)
Mohlke, Karen L (52)
Grallert, Harald (51)
Thorleifsson, Gudmar (50)
Steinthorsdottir, Va ... (50)
Bergman, Richard N. (50)
Morris, Andrew D (50)
Boehnke, Michael (49)
Pedersen, Oluf, (48)
Lindgren, Cecilia M. (48)
Luan, Jian'an (46)
Perry, John R. B. (46)
Illig, Thomas (46)
Tuomilehto, Jaakko (46)
Salomaa, Veikko (45)
Hofman, Albert (44)
Gieger, Christian (44)
Barroso, Inês (44)
Zeggini, Eleftheria (44)
Froguel, Philippe, (43)
Boerwinkle, Eric (43)
Mahajan, Anubha (43)
Scott, Robert A (42)
Bonnycastle, Lori L. (42)
Palmer, Colin N. A. (41)
Lyssenko, Valeriya, (40)
Grarup, Niels, (40)
Qi, Lu (40)
Wood, Andrew R. (40)
Loos, Ruth J. F. (40)
Groop, Leif, (39)
Esko, Tonu (39)
Hayward, Caroline (39)
Kovacs, Peter (39)
Lind, Lars, (38)
Chines, Peter S. (38)
Tuomi, Tiinamaija, (37)
Ingelsson, Erik (37)
visa färre...
Lärosäte
Lunds universitet (34)
Uppsala universitet (25)
Umeå universitet (20)
Karolinska Institutet (17)
Göteborgs universitet (15)
Linköpings universitet (4)
visa fler...
Stockholms universitet (3)
Mittuniversitetet (2)
visa färre...
Språk
Engelska (92)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (91)
Naturvetenskap (5)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy