SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Haycock Philip C.) ;pers:(Haycock Philip C.)"

Sökning: WFRF:(Haycock Philip C.) > Haycock Philip C.

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Haycock, Philip C., et al. (författare)
  • Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases A Mendelian Randomization Study
  • 2017
  • Ingår i: JAMA Oncology. - : American Medical Association. - 2374-2437 .- 2374-2445. ; 3:5, s. 636-651
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE: The causal direction and magnitude of the association between telomere length and incidence of cancer and non-neoplastic diseases is uncertain owing to the susceptibility of observational studies to confounding and reverse causation. OBJECTIVE: To conduct a Mendelian randomization study, using germline genetic variants as instrumental variables, to appraise the causal relevance of telomere length for risk of cancer and non-neoplastic diseases. DATA SOURCES: Genomewide association studies (GWAS) published up to January 15, 2015. STUDY SELECTION: GWAS of noncommunicable diseases that assayed germline genetic variation and did not select cohort or control participants on the basis of preexisting diseases. Of 163 GWAS of noncommunicable diseases identified, summary data from 103 were available. DATA EXTRACTION AND SYNTHESIS: Summary association statistics for single nucleotide polymorphisms (SNPs) that are strongly associated with telomere length in the general population. MAIN OUTCOMES AND MEASURES: Odds ratios (ORs) and 95% confidence intervals (CIs) for disease per standard deviation (SD) higher telomere length due to germline genetic variation. RESULTS: Summary data were available for 35 cancers and 48 non-neoplastic diseases, corresponding to 420 081 cases (median cases, 2526 per disease) and 1 093 105 controls (median, 6789 per disease). Increased telomere length due to germline genetic variation was generally associated with increased risk for site-specific cancers. The strongest associations (ORs [ 95% CIs] per 1-SD change in genetically increased telomere length) were observed for glioma, 5.27 (3.15-8.81); serous low-malignant-potential ovarian cancer, 4.35 (2.39-7.94); lung adenocarcinoma, 3.19 (2.40-4.22); neuroblastoma, 2.98 (1.92-4.62); bladder cancer, 2.19 (1.32-3.66); melanoma, 1.87 (1.55-2.26); testicular cancer, 1.76 (1.02-3.04); kidney cancer, 1.55 (1.08-2.23); and endometrial cancer, 1.31 (1.07-1.61). Associations were stronger for rarer cancers and at tissue sites with lower rates of stem cell division. There was generally little evidence of association between genetically increased telomere length and risk of psychiatric, autoimmune, inflammatory, diabetic, and other non-neoplastic diseases, except for coronary heart disease (OR, 0.78 [ 95% CI, 0.67-0.90]), abdominal aortic aneurysm (OR, 0.63 [ 95% CI, 0.49-0.81]), celiac disease (OR, 0.42 [ 95% CI, 0.28-0.61]) and interstitial lung disease (OR, 0.09 [ 95% CI, 0.05-0.15]). CONCLUSIONS AND RELEVANCE: It is likely that longer telomeres increase risk for several cancers but reduce risk for some non-neoplastic diseases, including cardiovascular diseases.
  •  
2.
  • Carreras-Torres, Robert, et al. (författare)
  • Obesity, metabolic factors and risk of different histological types of lung cancer : a Mendelian randomization study
  • 2017
  • Ingår i: PLOS ONE. - : Public library science. - 1932-6203. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. Methods and findings: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01-1.43] and for small cell lung cancer (OR [95% CI] = 1.52 [1.15-2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m(2)]), but not for adenocarcinoma (OR [95% CI] = 0.93 [0.79-1.08]) (P-heterogeneity = 4.3x10(-3)). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10(-3)), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95% CI] = 0.90 [0.84-0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95% CI] = 1.63 [1.25-2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. Conclusions: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior.
  •  
3.
  • Johansson, Mattias, et al. (författare)
  • The influence of obesity-related factors in the etiology of renal cell carcinoma—A mendelian randomization study
  • 2019
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Several obesity-related factors have been associated with renal cell carcinoma (RCC), but it is unclear which individual factors directly influence risk. We addressed this question using genetic markers as proxies for putative risk factors and evaluated their relation to RCC risk in a mendelian randomization (MR) framework. This methodology limits bias due to confounding and is not affected by reverse causation.Methods and findings: Genetic markers associated with obesity measures, blood pressure, lipids, type 2 diabetes, insulin, and glucose were initially identified as instrumental variables, and their association with RCC risk was subsequently evaluated in a genome-wide association study (GWAS) of 10,784 RCC patients and 20,406 control participants in a 2-sample MR framework. The effect on RCC risk was estimated by calculating odds ratios (ORSD) for a standard deviation (SD) increment in each risk factor. The MR analysis indicated that higher body mass index increases the risk of RCC (ORSD: 1.56, 95% confidence interval [CI] 1.44–1.70), with comparable results for waist-to-hip ratio (ORSD: 1.63, 95% CI 1.40–1.90) and body fat percentage (ORSD: 1.66, 95% CI 1.44–1.90). This analysis further indicated that higher fasting insulin (ORSD: 1.82, 95% CI 1.30–2.55) and diastolic blood pressure (DBP; ORSD: 1.28, 95% CI 1.11–1.47), but not systolic blood pressure (ORSD: 0.98, 95% CI 0.84–1.14), increase the risk for RCC. No association with RCC risk was seen for lipids, overall type 2 diabetes, or fasting glucose.Conclusions: This study provides novel evidence for an etiological role of insulin in RCC, as well as confirmatory evidence that obesity and DBP influence RCC risk.
  •  
4.
  • Zhou, Wen, et al. (författare)
  • Causal relationships between body mass index, smoking and lung cancer : Univariable and multivariable Mendelian randomization
  • 2021
  • Ingår i: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 148:5, s. 1077-1086
  • Tidskriftsartikel (refereegranskat)abstract
    • At the time of cancer diagnosis, body mass index (BMI) is inversely correlated with lung cancer risk, which may reflect reverse causality and confounding due to smoking behavior. We used two-sample univariable and multivariable Mendelian randomization (MR) to estimate causal relationships of BMI and smoking behaviors on lung cancer and histological subtypes based on an aggregated genome-wide association studies (GWASs) analysis of lung cancer in 29 266 cases and 56 450 controls. We observed a positive causal effect for high BMI on occurrence of small-cell lung cancer (odds ratio (OR) = 1.60, 95% confidence interval (CI) = 1.24-2.06,P= 2.70 x 10(-4)). After adjustment of smoking behaviors using multivariable Mendelian randomization (MVMR), a direct causal effect on small cell lung cancer (ORMVMR= 1.28, 95% CI = 1.06-1.55,P-MVMR= .011), and an inverse effect on lung adenocarcinoma (ORMVMR= 0.86, 95% CI = 0.77-0.96,P-MVMR= .008) were observed. A weak increased risk of lung squamous cell carcinoma was observed for higher BMI in univariable Mendelian randomization (UVMR) analysis (ORUVMR= 1.19, 95% CI = 1.01-1.40,P-UVMR= .036), but this effect disappeared after adjustment of smoking (ORMVMR= 1.02, 95% CI = 0.90-1.16,P-MVMR= .746). These results highlight the histology-specific impact of BMI on lung carcinogenesis and imply mediator role of smoking behaviors in the association between BMI and lung cancer.
  •  
5.
  • Haycock, Philip C, et al. (författare)
  • The association between genetically elevated polyunsaturated fatty acids and risk of cancer.
  • 2023
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 91
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The causal relevance of polyunsaturated fatty acids (PUFAs) for risk of site-specific cancers remains uncertain.METHODS: Using a Mendelian randomization (MR) framework, we assessed the causal relevance of PUFAs for risk of cancer in European and East Asian ancestry individuals. We defined the primary exposure as PUFA desaturase activity, proxied by rs174546 at the FADS locus. Secondary exposures were defined as omega 3 and omega 6 PUFAs that could be proxied by genetic polymorphisms outside the FADS region. Our study used summary genetic data on 10 PUFAs and 67 cancers, corresponding to 562,871 cases and 1,619,465 controls, collected by the Fatty Acids in Cancer Mendelian Randomization Collaboration. We estimated odds ratios (ORs) for cancer per standard deviation increase in genetically proxied PUFA exposures.FINDINGS: Genetically elevated PUFA desaturase activity was associated (P < 0.0007) with higher risk (OR [95% confidence interval]) of colorectal cancer (1.09 [1.07-1.11]), esophageal squamous cell carcinoma (1.16 [1.06-1.26]), lung cancer (1.06 [1.03-1.08]) and basal cell carcinoma (1.05 [1.02-1.07]). There was little evidence for associations with reproductive cancers (OR = 1.00 [95% CI: 0.99-1.01]; Pheterogeneity = 0.25), urinary system cancers (1.03 [0.99-1.06], Pheterogeneity = 0.51), nervous system cancers (0.99 [0.95-1.03], Pheterogeneity = 0.92) or blood cancers (1.01 [0.98-1.04], Pheterogeneity = 0.09). Findings for colorectal cancer and esophageal squamous cell carcinoma remained compatible with causality in sensitivity analyses for violations of assumptions. Secondary MR analyses highlighted higher omega 6 PUFAs (arachidonic acid, gamma-linolenic acid and dihomo-gamma-linolenic acid) as potential mediators. PUFA biosynthesis is known to interact with aspirin, which increases risk of bleeding and inflammatory bowel disease. In a phenome-wide MR study of non-neoplastic diseases, we found that genetic lowering of PUFA desaturase activity, mimicking a hypothetical intervention to reduce cancer risk, was associated (P < 0.0006) with increased risk of inflammatory bowel disease but not bleeding.INTERPRETATION: The PUFA biosynthesis pathway may be an intervention target for prevention of colorectal cancer and esophageal squamous cell carcinoma but with potential for increased risk of inflammatory bowel disease.
  •  
6.
  • Battram, Thomas, et al. (författare)
  • Appraising the causal relevance of DNA methylation for risk of lung cancer
  • 2019
  • Ingår i: International Journal of Epidemiology. - : Oxford University Press. - 0300-5771 .- 1464-3685. ; 48:5, s. 1493-1504
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: DNA methylation changes in peripheral blood have recently been identified in relation to lung cancer risk. Some of these changes have been suggested to mediate part of the effect of smoking on lung cancer. However, limitations with conventional mediation analyses mean that the causal nature of these methylation changes has yet to be fully elucidated.Methods: We first performed a meta-analysis of four epigenome-wide association studies (EWAS) of lung cancer (918 cases, 918 controls). Next, we conducted a two-sample Mendelian randomization analysis, using genetic instruments for methylation at CpG sites identified in the EWAS meta-analysis, and 29 863 cases and 55 586 controls from the TRICL-ILCCO lung cancer consortium, to appraise the possible causal role of methylation at these sites on lung cancer.Results: Sixteen CpG sites were identified from the EWAS meta-analysis [false discovery rate (FDR) < 0.05], for 14 of which we could identify genetic instruments. Mendelian randomization provided little evidence that DNA methylation in peripheral blood at the 14 CpG sites plays a causal role in lung cancer development (FDR > 0.05), including for cg05575921-AHRR where methylation is strongly associated with both smoke exposure and lung cancer risk.Conclusions: The results contrast with previous observational and mediation analysis, which have made strong claims regarding the causal role of DNA methylation. Thus, previous suggestions of a mediating role of methylation at sites identified in peripheral blood, such as cg05575921-AHRR, could be unfounded. However, this study does not preclude the possibility that differential DNA methylation at other sites is causally involved in lung cancer development, especially within lung tissue.
  •  
7.
  • Carreras-Torres, Robert, et al. (författare)
  • The causal relevance of body mass index in different histological types of lung cancer : a Mendelian randomization study
  • 2016
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Body mass index (BMI) is inversely associated with lung cancer risk in observational studies, even though it increases the risk of several other cancers, which could indicate confounding by tobacco smoking or reverse causality. We used the two-sample Mendelian randomization (MR) approach to circumvent these limitations of observational epidemiology by constructing a genetic instrument for BMI, based on results from the GIANT consortium, which was evaluated in relation to lung cancer risk using GWAS results on 16,572 lung cancer cases and 21,480 controls. Results were stratified by histological subtype, smoking status and sex. An increase of one standard deviation (SD) in BMI (4.65 Kg/m(2)) raised the risk for lung cancer overall (OR = 1.13; P = 0.10). This was driven by associations with squamous cell (SQ) carcinoma (OR = 1.45; P = 1.2 × 10(-3)) and small cell (SC) carcinoma (OR = 1.81; P = 0.01). An inverse trend was seen for adenocarcinoma (AD) (OR = 0.82; P = 0.06). In stratified analyses, a 1 SD increase in BMI was inversely associated with overall lung cancer in never smokers (OR = 0.50; P = 0.02). These results indicate that higher BMI may increase the risk of certain types of lung cancer, in particular SQ and SC carcinoma.
  •  
8.
  • Fasanelli, Francesca, et al. (författare)
  • Hypomethylation of smoking-related genes is associated with future lung cancer in four prospective cohorts
  • 2015
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA hypomethylation in certain genes is associated with tobacco exposure but it is unknown whether these methylation changes translate into increased lung cancer risk. In an epigenome-wide study of DNA from pre-diagnostic blood samples from 132 case–control pairs in the NOWAC cohort, we observe that the most significant associations with lung cancer risk are for cg05575921 in AHRR (OR for 1 s.d.=0.37, 95% CI: 0.31–0.54, P-value=3.3 × 10−11) and cg03636183 in F2RL3 (OR for 1 s.d.=0.40, 95% CI: 0.31–0.56, P-value=3.9 × 10−10), previously shown to be strongly hypomethylated in smokers. These associations remain significant after adjustment for smoking and are confirmed in additional 664 case–control pairs tightly matched for smoking from the MCCS, NSHDS and EPIC HD cohorts. The replication and mediation analyses suggest that residual confounding is unlikely to explain the observed associations and that hypomethylation of these CpG sites may mediate the effect of tobacco on lung cancer risk.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy