SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heinegård Dick) ;hsvcat:4"

Sökning: WFRF:(Heinegård Dick) > Lantbruksvetenskap

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Skiöldebrand, Eva, et al. (författare)
  • Ultrastructural immunolocalization of cartilage oligomeric matrix protein (COMP) in the articular cartilage on the equine third carpal bone in trained and untrained horses
  • 2010
  • Ingår i: Research in Veterinary Science. - : Elsevier BV. - 0034-5288 .- 1532-2661. ; 88:2, s. 251-257
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study was designed to delineate the presence of COMP at the ultrastructural level comparing concentrations between two areas of articular cartilage from the equine third carpal bone, subjected to different loading, from trained and untrained horses. We also analyzed the fibril thickness of collagen type II in the same compartments and zones. Samples were collected from high load-bearing areas of the dorsal radial facet (intermittent high load) and an area of the palmar condyle (low constant load) in five non-trained and three trained young racehorses. The data show that COMP is much less abundant in the matrix in intermittent high loaded areas of articular cartilage from trained horses as compared to the untrained horses (p = 0.036). On the other hand, the untrained horses often displayed a higher immunolabeling in loaded areas compared to unloaded areas, indicating that an adequate dynamic load promotes COMP synthesis and/or retention, while an excessive load may have an opposite effect. The collagen fibril diameter showed marked variation between individuals. The present study indicates that dynamic in vivo compression at high load and frequency lowers matrix content of COMP in the articular cartilage of the third carpal bone. It also indicates that the collagen network is influenced by mechanical load following by strenuous exercise. (C) 2009 Elsevier Ltd. All rights reserved.
  •  
2.
  • van Wieringen, Tijs, et al. (författare)
  • The streptococcal collagen-binding protein CNE specifically interferes with {alpha}V{beta}3-mediated cellular interactions with triple helical collagen
  • 2010
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 285:46, s. 35803-35813
  • Tidskriftsartikel (refereegranskat)abstract
    • Collagen fibers expose distinct domains allowing for specific interactions with other extracellular matrix proteins and cells. To investigate putative collagen domains that govern integrin α(V)β(3)-mediated cellular interactions with native collagen fibers we took advantage of the streptococcal protein CNE that bound native fibrillar collagens. CNE specifically inhibited α(V)β(3)-dependent cell-mediated collagen gel contraction, PDGF BB-induced and α(V)β(3)-mediated adhesion of cells, and binding of fibronectin to native collagen. Using a Toolkit composed of overlapping, 27-residue triple helical segments of collagen type II, two CNE-binding sites present in peptides II-1 and II-44 were identified. These peptides lack the major binding site for collagen-binding β(1) integrins, defined by the peptide GFOGER. Peptide II-44 corresponds to a region of collagen known to bind collagenases, discoidin domain receptor 2, SPARC (osteonectin), and fibronectin. In addition to binding fibronectin, peptide II-44 but not II-1 inhibited α(V)β(3)-mediated collagen gel contraction and, when immobilized on plastic, supported adhesion of cells. Reduction of fibronectin expression by siRNA reduced PDGF BB-induced α(V)β(3)-mediated contraction. Reconstitution of collagen types I and II gels in the presence of CNE reduced collagen fibril diameters and fibril melting temperatures. Our data indicate that contraction proceeded through an indirect mechanism involving binding of cell-produced fibronectin to the collagen fibers. Furthermore, our data show that cell-mediated collagen gel contraction does not directly depend on the process of fibril formation.
  •  
3.
  • Ekman, S, et al. (författare)
  • Ultrastructural immunolocalisation of bone sialoprotein in the osteocartilagenous interface of the equine third carpal bone
  • 2005
  • Ingår i: Equine Veterinary Journal. - : Wiley. - 0425-1644 .- 2042-3306. ; 37:1, s. 26-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Reasons for performing study: One of the most common causes of lameness in racehorses is osteoarthritis (OA). Pathogenesis is not clear and pathological processes of the different joint tissues interact in often progressive events. The interface between cartilage and newly synthesised bone has been shown to be particularly enriched in bone sialoprotein (BSP), a cell-binding matrix protein. Objectives: To establish whether changes in the concentration of BSP may serve as a marker for early biochemical changes of the subchondral bone. Methods: Articular cartilage, cartilage/bone interface and subchondral bone of the proximal third carpal bone from 3 Standardbred trotters were analysed ultrastructurally for the presence of BSP in normal and degenerative areas. Results: A marked increase of BSP in the cartilage/bone interface with degenerative changes of the bone and cartilage compared to the morphologically intact cartilage/bone interface was noted, but levels of the protein were distinctly lower in the distal bone. Conclusions: The results indicate that BSP has the potential to be used as a marker for changes in bone metabolism in the subchondral one. Potential relevance: Tools to monitor early biochemical changes within the connective tissues of the joint in vivo are essential in studies of the pathogenesis of OA. These could be used to monitor and understand such changes in relation to load, exercise, training programmes, inflammation and the development of OA.
  •  
4.
  •  
5.
  • Guo, Yongzhi, 1972- (författare)
  • Plasmin : a potent pro-inflammatory factor
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Plasmin, the central molecule of the plasminogen activator system, is a broad-spectrum serine protease. Plasmin is important for the degradation of fibrin and other components of the extracellular matrix (ECM) during a number of physiological and pathological processes. The aim of this thesis was to elucidate the functional roles of plasmin during pathological inflammation and infection in autoimmune and non-autoimmune diseases. For this purpose, mouse models of rheumatoid arthritis (RA), bacterial arthritis, infection, and sepsis have been used. Previous studies from our laboratory have shown that plasminogen-deficient mice are resistant to the development of collagen type II-induced arthritis (CIA). In contrast, others have shown that plasmin plays a protective role in antigen-induced arthritis (AIA). To investigate the contrasting roles of plasminogen deficiency in models of CIA and AIA, a new animal model of arthritis called local injection-induced arthritis (LIA) was developed. In this model, we replaced methylated bovine serum albumin, which is normally used as an immunogen in the AIA model, with collagen type II (CII) to induce arthritis. When wild-type and plasminogen-deficient mice were injected intra-articularly with CII or 0.9% NaCl following CIA induction, plasminogen-deficient mice developed typical CIA, but the disease was less severe than in wild-type mice and was restricted to the injected joints. When the AIA model was used, plasminogen-deficient mice developed a much more severe arthritis than the wild-type mice. These results indicate that both the antigen and joint trauma caused by the local injection are critical to explaining the contrasting roles of plasminogen deficiency in CIA and AIA. This indicates that CIA and AIA have distinct pathogenic mechanisms and plasmin plays contrasting roles in different types of arthritis models. To study the functional roles of plasmin in the host inflammatory response during infectious arthritis, a Staphylococcus aureus-induced bacterial arthritis model was established. When wild-type mice were injected intra-articularly with 1 × 106 colony-forming units (CFU) of S. aureus per joint, all the bacteria were completely eliminated from the injected joints in 28 days. However, in the plasminogen-deficient mice, the S. aureus counts were 27-fold higher at day 28 than at day 0. When human plasminogen was given to the plasminogen-deficient mice daily for 7 days, the bacterial clearance was greatly improved and the necrotic tissue in the joint cavity was also completely eliminated. Supplementation of plasminogen-deficient mice with plasminogen also restored the expression level of interleukin-6 (IL-6) in the arthritic joints. In summary, plasmin has protective roles during S. aureus-induced arthritis by enhancing cytokine expression, removing necrotic tissue, and mediating bacterial killing and inflammatory cell activation. The functional roles of plasmin during infection and sepsis were also studied in mice. Infection was induced by injecting 1 × 107 CFU of S. aureus intravenously and the sepsis model was induced by injecting 1.6 × 108 CFU of S. aureus. In the infection model, the wild-type mice had a 25-day survival rate of 86.7%, as compared to 50% in the plasminogen-deficient group. However, when sepsis was induced, the average survival for plasminogen-deficient mice was 3 days longer than for wild-type mice. Twenty-four hours after the induction of sepsis, the serum levels of IL-6 and IL-10 as well as the bacterial counts in all organs investigated were significantly higher in wild-type mice than in plasminogen-deficient mice. In wild-type mice, blockade of IL-6 by intravenous injection of anti-IL-6 antibodies significantly prolonged the onset of mortality and improved the survival rate during sepsis. These data indicate that plasmin plays different roles during infection and sepsis. Furthermore, plasmin appears to be involved in the regulation of inflammatory cytokine expression during sepsis. Taken together, our data indicate that plasmin plays multifunctional pro-inflammatory roles in different autoimmune and non-autoimmune diseases. The pro-inflammatory roles of plasmin include activation of inflammatory cells, regulation of cytokine expression, and enhancement of the bacterial killing ability of the host.
  •  
6.
  • Södersten, Fredrik, et al. (författare)
  • Immunolocalization of Collagens (I and III) and Cartilage Oligomeric Matrix Protein in the Normal and Injured Equine Superficial Digital Flexor Tendon
  • 2013
  • Ingår i: Connective Tissue Research. - : Informa UK Limited. - 1607-8438 .- 0300-8207. ; 54:1, s. 62-69
  • Tidskriftsartikel (refereegranskat)abstract
    • This is a descriptive study of tendon pathology with different structural appearances of repair tissue correlated to immunolocalization of cartilage oligomeric matrix protein (COMP) and type I and III collagens and expression of COMP mRNA. The material consists of nine tendons from seven horses (5-25 years old; mean age of 10 years) with clinical tendinopathy and three normal tendons from horses (3, 3, and 13 years old) euthanized for non-orthopedic reasons. The injured tendons displayed different repair-tissue appearances with organized and disorganized fibroblastic regions as well as areas of necrosis. The normal tendons presented distinct immunoreactivity for COMP and expression of COMP mRNA and type I collagen in the normal aligned fiber structures, but no immunolabeling of type III collagen. However, immunoreactivity for type III collagen was present in the endotenon surrounding the fiber bundles, where no expression of COMP could be seen. Immunostaining for type I and III collagens was present in all of the pathologic regions indicating repair tissue. Interestingly, the granulation tissues showed immunostaining for COMP and expression of COMP mRNA, indicating a role for COMP in repair and remodeling of the tendon after fiber degeneration and rupture. The present results suggest that not only type III collagen but also COMP is involved in the repair and remodeling processes of the tendon.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy