SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heinegård Dick) ;pers:(Holmér Andreas)"

Sökning: WFRF:(Heinegård Dick) > Holmér Andreas

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Happonen, Kaisa, et al. (författare)
  • Complement inhibitor C4b-binding protein interacts directly with small glycoproteins of the extracellular matrix.
  • 2009
  • Ingår i: Journal of immunology. - 1550-6606. ; 182:3, s. 1518-1525
  • Tidskriftsartikel (refereegranskat)abstract
    • Components derived from cartilage have been suggested to maintain the inflammation in joints in arthritis. Small leucine-rich repeat proteins (SLRPs) are structural components of cartilage important in organizing the meshwork of extracellular matrix components. It has recently been shown that the SLRP fibromodulin interacts with complement initiator C1q, leading to complement activation. The complement response is limited since fibromodulin also interacts with the complement inhibitor factor H. We have now found that osteoadherin, chondroadherin, fibromodulin, and proline arginine-rich end leucine-rich repeat protein bind to the complement inhibitor C4b-binding protein (C4BP). Using direct binding assays with C4BP fragments and C4BP mutants lacking individual domains in combination with electron microscopy, we have demonstrated that mainly the central core of C4BP mediated binding to SLRPs. Binding of SLRPs to C4BP did not affect its ability to inhibit complement. Osteoadherin, fibromodulin, and chondroadherin, which bind C1q and activate complement, were found to cause significantly higher C9 deposition in C4BP-depleted serum compared with Igs, indicating that the level of complement activation initiated by SLRPs is regulated by simultaneous binding to C4BP. A similar dual binding of C1q and complement inhibitors was observed previously for other endogenous ligands (amyloid, prions, C-reactive protein, and apoptotic cells) but not for exogenous activators (bacteria-bound Igs). These interactions can be significant during inflammatory joint diseases, such as rheumatoid arthritis, where cartilage is degraded, and cartilage components are released into synovial fluid, where they can interact with factors of the complement system.
  •  
2.
  •  
3.
  • Holmér, Andreas, et al. (författare)
  • Short leucine-rich glycoproteins of the extracellular matrix display diverse patterns of complement interaction and activation.
  • 2009
  • Ingår i: Molecular Immunology. - : Elsevier BV. - 1872-9142 .- 0161-5890. ; 46, s. 830-839
  • Tidskriftsartikel (refereegranskat)abstract
    • The extracellular matrix consists of structural macromolecules and other proteins with regulatory functions. An important family of the latter class of molecules found in most tissues is the small leucine-rich repeat proteins (SLRPs). We have previously shown that the SLRP fibromodulin binds directly to C1q and activates the classical pathway of complement. In the present study we further examine the interactions between SLRPs and complement. Osteoadherin, like fibromodulin, binds C1q and activates the classical pathway strongly while moderate activation is seen in the terminal pathway. This can be explained by the interaction of fibromodulin and osteoadherin with factor H, a major soluble inhibitor of complement. Also, chondroadherin was found to bind C1q and activate complement, albeit to a lesser extent. Chondroadherin also binds factor H. We confirm published data showing that biglycan and decorin bind C1q but do not activate complement. In this study a similar pattern is seen for lumican although its affinity for C1q is lower than for biglycan and decorin. Furthermore, using electron microscopy and radiolabeled SLRPs, we demonstrate two different classes of SLRP binding sites on C1q, to head and stalk respectively, where only binding to the head appears to be activating. We propose a role for SLRPs in the regulation of complement activation in diseases involving the extracellular matrix, particularly those characterized by chronic inflammation such as rheumatoid arthritis, atherosclerosis, osteoarthritis and chronic obstructive lung disease.
  •  
4.
  • Holmér, Andreas, et al. (författare)
  • The extracellular matrix and inflammation - Fibromodulin activates the classical pathway of complement by directly binding C1q
  • 2005
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 280:37, s. 32301-32308
  • Tidskriftsartikel (refereegranskat)abstract
    • Components that propagate inflammation in joint disease may be derived from cartilage since the inflammation resolves after joint replacement. We found that the cartilage component fibromodulin has the ability to activate an inflammatory cascade, i.e. complement. Fibromodulin and immunoglobulins cause comparable deposition of C1q, C4b, and C3b from human serum. Using C1q and factor B-deficient sera in combination with varying contents of metal ions, we established that fibromodulin activates both the classical and the alternative pathways of complement. Further studies revealed that fibromodulin binds directly to the globular heads of C1q, leading to activation of C1. However, deposition of the membrane attack complex and C5a release were lower in the presence of fibromodulin as compared with IgG. This can be explained by the fact that fibromodulin also binds complement inhibitor factor H. Factor H and C1q bind to non-overlapping sites on fibromodulin, but none of the interactions is mediated by the negatively charged keratan sulfate substituents of fibromodulin. C1q but not factor H binds to an N-terminal fragment of fibromodulin previously implicated to be affected in cartilage stimulated with the inflammatory cytokine interleukin 1. Taken together our observations indicate fibromodulin as one factor involved in the sustained inflammation of the joint.
  •  
5.
  • Holmér, Andreas, et al. (författare)
  • The factor H variant associated with age-related macular degeneration (H384) and the non-disease associated form bind differentially to C-reactive protein, fibromodulin, DNA and necrotic cells.
  • 2007
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 282:15, s. 10894-10900
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, a polymorphism in the complement regulator factor H (FH) gene has been associated with age-related macular degeneration. When histidine instead of tyrosine is present at position 384 in the seventh complement control protein (CCP) domain of FH, the risk for age-related macular degeneration is increased. It was recently shown that these allotypic variants of FH, in the context of a recombinant construct corresponding to CCPs 6 - 8, recognize polyanionic structures differently, which may lead to altered regulation of the alternative pathway of complement. We show now that His-384, corresponding to the risk allele, binds C-reactive protein (CRP) poorly compared with the Tyr-384 form. We also found that C1q and phosphorylcholine do not compete with FH for binding to C-reactive protein. The interaction with extracellular matrix protein fibromodulin, which we now show to be mediated, at least in part, by CCP6 - 8 of FH, occurs via the polypeptide of fibromodulin and not through its glycosaminoglycan modifications. The Tyr-384 variant of FH bound fibromodulin better than the His-384 form. Furthermore, we find that CCP6 - 8 is able to interact with DNA and necrotic cells, but in contrast the His-384 allotype binds these ligands more strongly than the Tyr-384 variant. The variations in binding affinity of the two alleles indicate that complement activation and local inflammation in response to different targets will differ between His/His and Tyr/Tyr homozygotes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy