SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heintzman Peter D.) ;pers:(Orlando Ludovic)"

Sökning: WFRF:(Heintzman Peter D.) > Orlando Ludovic

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cappellini, Enrico, et al. (författare)
  • Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny
  • 2019
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 574:7776, s. 103-
  • Tidskriftsartikel (refereegranskat)abstract
    • The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa(1). However, the irreversible post-mortem degradation(2) of ancient DNA has so far limited its recovery-outside permafrost areasto specimens that are not older than approximately 0.5 million years (Myr)(3). By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I-4. and suggested the presence of protein residues in fossils of the Cretaceous period(5)-although with limited phylogenetic use(6). In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch(7-9), using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia)(10). Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the Glade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck's rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel-which is the hardest tissue in vertebrates(11), and is highly abundant in the fossil record-can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation.
  •  
2.
  • Rasmussen, Morten, et al. (författare)
  • The genome of a Late Pleistocene human from a Clovis burial site in western Montana
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 506:7487, s. 225-229
  • Tidskriftsartikel (refereegranskat)abstract
    • Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 C-14 years before present (BP) (13,000 to 12,600 calendar years BP)(1,2). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology(3). However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans(2). An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum(4). Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 +/- 35 C-14 years BP (approximately 12,707-12,556 calendar years BP) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4x and show that the gene flow from the Siberian Upper Palaeolithic Mal'ta population(5) into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years BP. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy