SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heinz A) ;hsvcat:2"

Sökning: WFRF:(Heinz A) > Teknik

  • Resultat 1-10 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahdida, C., et al. (författare)
  • The experimental facility for the Search for Hidden Particles at the CERN SPS
  • 2019
  • Ingår i: Journal of Instrumentation. - : Institute of Physics Publishing (IOPP). - 1748-0221. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 GeV/c proton beam offers a unique opportunity to explore the Hidden Sector [1-3]. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP Collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived super-weakly interacting particles with masses up to O(10) GeV/c(2) in an environment of extremely clean background conditions. This paper describes the proposal for the experimental facility together with the most important feasibility studies. The paper focuses on the challenging new ideas behind the beam extraction and beam delivery, the proton beam dump, and the suppression of beam-induced background.
  •  
2.
  • Martel, I., et al. (författare)
  • An innovative Superconducting Recoil Separator for HIE-ISOLDE
  • 2023
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section B. - : ELSEVIER. - 0168-583X .- 1872-9584. ; 541, s. 176-179
  • Tidskriftsartikel (refereegranskat)abstract
    • The ISOLDE Scientific Infrastructure at CERN offers a unique range of post-accelerated radioactive beams. The scientific program can be improved with the "Isolde Superconducting Recoil Separator" (ISRS), an innovative spectrometer able to deliver unprecedented (A, Z) resolution. In this paper we present an overview of the physics and ongoing technical developments.
  •  
3.
  • Boretzky, K., et al. (författare)
  • NeuLAND: The high-resolution neutron time-of-flight spectrometer for R 3 B at FAIR
  • 2021
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 1014
  • Tidskriftsartikel (refereegranskat)abstract
    • NeuLAND (New Large-Area Neutron Detector) is the next-generation neutron detector for the R3B (Reactions with Relativistic Radioactive Beams) experiment at FAIR (Facility for Antiproton and Ion Research). NeuLAND detects neutrons with energies from 100 to 1000 MeV, featuring a high detection efficiency, a high spatial and time resolution, and a large multi-neutron reconstruction efficiency. This is achieved by a highly granular design of organic scintillators: 3000 individual submodules with a size of 5 × 5 × 250 cm3 are arranged in 30 double planes with 100 submodules each, providing an active area of 250 × 250 cm2 and a total depth of 3 m. The spatial resolution due to the granularity together with a time resolution of σt≤ 150 ps ensures high-resolution capabilities. In conjunction with calorimetric properties, a multi-neutron reconstruction efficiency of 50% to 70% for four-neutron events will be achieved, depending on both the emission scenario and the boundary conditions allowed for the reconstruction method. We present in this paper the final design of the detector as well as results from test measurements and simulations on which this design is based.
  •  
4.
  • Wiedorn, Max O., et al. (författare)
  • Megahertz serial crystallography
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a beta-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.
  •  
5.
  • Wunderer, C. B., et al. (författare)
  • Detector developments at DESY
  • 2016
  • Ingår i: Journal of Synchrotron Radiation. - 0909-0495 .- 1600-5775. ; 23, s. 111-117
  • Tidskriftsartikel (refereegranskat)abstract
    • With the increased brilliance of state-of-the-art synchrotron radiation sources and the advent of free-electron lasers (FELs) enabling revolutionary science with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon sensitivity with low probability of false positives and (multi)-megapixels. At DESY, one ongoing development project-in collaboration with RAL/STFC, Elettra Sincrotrone Trieste, Diamond, and Pohang Accelerator Laboratory-is the CMOS-based soft X-ray imager PERCIVAL. PERCIVAL is a monolithic active-pixel sensor back-thinned to access its primary energy range of 250 eV to 1 keV with target efficiencies above 90%. According to preliminary specifications, the roughly 10 cm × 10 cm, 3.5k × 3.7k monolithic sensor will operate at frame rates up to 120 Hz (commensurate with most FELs) and use multiple gains within 27 μm pixels to measure 1 to ∼ 100000 (500 eV) simultaneously arriving photons. DESY is also leading the development of the AGIPD, a high-speed detector based on hybrid pixel technology intended for use at the European XFEL. This system is being developed in collaboration with PSI, University of Hamburg, and University of Bonn. The AGIPD allows singlepulse imaging at 4.5 MHz frame rate into a 352-frame buffer, with a dynamic range allowing single-photon detection and detection of more than 10000 photons at 12.4 keV in the same image. Modules of 65k pixels each are configured to make up (multi)megapixel cameras. This review describes the AGIPD and the PERCIVAL concepts and systems, including some recent results and a summary of their current status. It also gives a short overview over other FEL-relevant developments where the Photon Science Detector Group at DESY is involved. © 2016 International Union of Crystallography.
  •  
6.
  • Blanco, A., et al. (författare)
  • Performance of timing resistive plate chambers with relativistic neutrons from 300 to 1500 MeV
  • 2015
  • Ingår i: Journal of Instrumentation. - : IOP Publishing. - 1748-0221. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A prototype composed of four resistive plate chamber layers has been exposed to quasi-monoenergetic neutrons produced from a deuteron beam of varying energy (300 to 1500 AMeV) in experiment S406 at GSI, Darmstad, Germany. Each layer, with an active area of about 2000 × 500 mm2, is made of modules containing the active gaps, all in multigap construction. Each gap is defined by 0.3 mm nylon mono-filaments positioned between 2.85 mm thick float glass electrodes. The modules are operated in avalanche mode with a non-flammable gas mixture composed of 90% C2H2F4 and 10% SF6. The signals are readout by a pick-up electrode formed by 15 copper strips (per layer), spaced at a pitch of 30 mm, connected at both sides to timing front end electronics. Measurements of the time of flight jitter of neutrons, in the mentioned energy range, point to a contribution of the resistive plate chamber in the order of 150 ps, independent of the neutron energy.
  •  
7.
  • Allahgholi, A., et al. (författare)
  • AGIPD 1.0 : The high-speed high dynamic range readout ASIC for the adaptive gain integrating pixel detector at the European XFEL
  • 2014
  • Ingår i: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2014. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781479960972
  • Konferensbidrag (refereegranskat)abstract
    • AGIPD is a hybrid pixel X-ray detector developed by a collaboration between Deutsches Elektronen-Synchrotron (DESY), Paul-Scherrer-Institute (PSI), University of Hamburg and the University of Bonn. The detector is designed to comply with the requirements of the European XFEL. The radiation tolerant Application Specific Integrated Circuit (ASIC) is designed with the following highlights: high dynamic range, spanning from single photon sensitivity up to 104 × 12.4 keV photons, achieved by the use of dynamic gain switching, auto-selecting one of 3 gains of the charge sensitive pre-amplifier. To cope with the unique features of the European XFEL source, image data is stored in 352 analogue memory cells per pixel. The selected gain is stored in the same way and depth, encoded as one of 3 voltage levels. These memories are operated in random-access mode at 4.5MHz frame rate. Data is read out on a row-by-row basis via multiplexers to the DAQ system for digitisation during the 99.4ms gap between the bunch trains of the European XFEL. The AGIPD 1.0 ASIC features 64×64 pixels with a pixel area of 200×200 μm2. It is bump-bonded to a 500 μm thick silicon sensor. The principles of the chip architecture were proven in different experiments and the ASIC characterization was performed with a series of development prototypes. The mechanical concept of the detector system was developed in close contact with the XFEL beamline scientists to ensure a seamless integration into the beamline setup and is currently being manufactured. The first single module system was successfully tested at APS1 the high dynamic range allows imaging of the direct synchrotron beam along with single photon sensitivity and burst imaging of 352 subsequent frames synchronized to the source.
  •  
8.
  • Allahgholi, A., et al. (författare)
  • AGIPD, a high dynamic range fast detector for the European XFEL
  • 2015
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • AGIPD-(Adaptive Gain Integrating Pixel Detector) is a hybrid pixel X-ray detector developed by a collaboration between Deutsches Elektronen-Synchrotron (DESY), Paul-Scherrer-Institut (PSI), University of Hamburg and the University of Bonn. The detector is designed to comply with the requirements of the European XFEL. The radiation tolerant Application Specific Integrated Circuit (ASIC) is designed with the following highlights: high dynamic range, spanning from single photon sensitivity up to 10(4) 12.5keV photons, achieved by the use of the dynamic gain switching technique using 3 possible gains of the charge sensitive preamplifier. In order to store the image data, the ASIC incorporates 352 analog memory cells per pixel, allowing also to store 3 voltage levels corresponding to the selected gain. It is operated in random-access mode at 4.5MHz frame rate. The data acquisition is done during the 99.4ms between the bunch trains. The AGIPD has a pixel area of 200 x 200 m m(2) and a 500 m m thick silicon sensor is used. The architecture principles were proven in different experiments and the ASIC characterization was done with a series of development prototypes. The mechanical concept was developed in the close contact with the XFEL beamline scientists and is now being manufactured. A first single module system was successfully tested at APS.
  •  
9.
  • Allahgholi, A., et al. (författare)
  • AGIPD, the electronics for a high speed X-ray imager at the Eu-XFEL
  • 2014
  • Ingår i: Proceedings of Science. - : Proceedings of Science (PoS).
  • Konferensbidrag (refereegranskat)abstract
    • The AGIPD (Adaptive Gain Integrated Pixel Detector) X-ray imaging camera will be operated at the X-ray Free Electron Laser, Eu-XFEL, under construction in Hamburg, Germany. Key parameters are 1 million 200 μm square pixels, single 12.4 keV photon detection and a dynamic range to 10 000/pixel/image. The developed sensors, ASICs, PCB-electronics and FPGA firmware acquire individual images per bunch at 27 000 bunches/s, packed into 10 bunch-trains/s with a bunch separation of 222 ns. Bunch-trains are handled by 352 analogue storage cells within each pixel of the ASIC and written during the 0.6msec train delivery. Therefore AGIPD can store 3520 images/s from the delivered 27 000 bunches/s. Random addressing provides reusability of each cell after an image has been declared as low-quality, so that good images can be selected. Digitization is performed between trains (99.4 msec). In the paper all functional blocks are introduced. The details concentrate on the DAQ-chain PCB-electronics and the slow control. A dense area of 1024 ADC-channels, each with a pickup-noise filtering and sampling of up to 50 MS/s/ADC and a serial output of 700 Mbit/s/ADC. FPGAs operate the ASICs synchronized to the bunch structure and collect the bit streams from 64 ADCs/FPGA. Pre-sorted data is transmitted on 10 GbE links out of the camera head using the time between trains. The control and monitoring of the camera with 600 A current consumption is based on a micro-controller and I2C bus with an addressing architecture allowing many devices and identical modules. The high currents require planned return paths at the system level. First experimental experience with the constructed components will be presented.
  •  
10.
  • Allahgholi, A., et al. (författare)
  • Front end ASIC for AGIPD, a high dynamic range fast detector for the European XFEL
  • 2016
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Adaptive Gain Integrating Pixel Detector (AGIPD) is a hybrid pixel X-ray detector for the European-XFEL. One of the detector's important parts is the radiation tolerant front end ASIC fulfilling the European-XFEL requirements: high dynamic range-from sensitivity to single 12.5keV-photons up to 104 photons. It is implemented using the dynamic gain switching technique with three possible gains of the charge sensitive preamplifier. Each pixel can store up to 352 images in memory operated in random-access mode at >= 4.5MHz frame rate. An external vetoing may be applied to overwrite unwanted frames.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 45
Typ av publikation
tidskriftsartikel (32)
konferensbidrag (11)
bokkapitel (2)
Typ av innehåll
refereegranskat (43)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Graafsma, Heinz (32)
Marras, A. (30)
Lange, S. (24)
Zimmer, M. (24)
Klyuev, A. (18)
Xia, Q. (18)
visa fler...
Hirsemann, H. (17)
Shi, X. (16)
Becker, J. (16)
Trunk, U (16)
Greiffenberg, D. (16)
Schmitt, B. (16)
Zhang, J. (15)
Jack, S. (15)
Mozzanica, A. (15)
Schwandt, J. (15)
Sheviakov, I. (14)
Klanner, R. (14)
Bianco, L. (14)
Dinapoli, R. (14)
Goettlicher, P. (13)
Rah, S. (13)
Allahgholi, A. (12)
Wunderer, C.B. (12)
Mezza, D. (11)
Smoljanin, S. (11)
Marsh, B. (11)
Cautero, G (11)
Shevyakov, I (11)
Giuressi, D. (11)
Stebel, L. (11)
Tartoni, N. (11)
Guerrini, N. (11)
Sedgwick, I. (11)
Delfs, A. (10)
Correa, J. (10)
Menk, R. (10)
Göttlicher, P. (9)
Krueger, H. (8)
Turchetta, R. (8)
Kruger, H. (7)
Bayer, M. (7)
Viti, M. (6)
Niemann, M. (6)
Tennert, M (6)
Pinaroli, G. (6)
Nicholls, T. (6)
Marchal, J (6)
Gronewald, M. (5)
Pedersen, U. (5)
visa färre...
Lärosäte
Mittuniversitetet (32)
Högskolan i Gävle (5)
Chalmers tekniska högskola (5)
Uppsala universitet (4)
Kungliga Tekniska Högskolan (3)
Luleå tekniska universitet (2)
visa fler...
Stockholms universitet (2)
Lunds universitet (2)
Högskolan Dalarna (2)
Örebro universitet (1)
RISE (1)
Sveriges Lantbruksuniversitet (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (45)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (20)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy