SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hellgren H.) ;lar1:(cth)"

Sökning: WFRF:(Hellgren H.) > Chalmers tekniska högskola

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ghandriz, Toheed, 1982, et al. (författare)
  • Impact of automated driving systems on road freight transport and electrified propulsion of heavy vehicles
  • 2020
  • Ingår i: Transportation Research, Part C: Emerging Technologies. - : Elsevier BV. - 0968-090X. ; 115
  • Tidskriftsartikel (refereegranskat)abstract
    • The technological barriers to automated driving systems (ADS) are being quickly overcome to deploy on–road vehicles that do not require a human driver on–board. ADS have opened up possibilities to improve mobility, productivity, logistics planning, and energy consumption. However, further enhancements in productivity and energy consumption are required to reach CO2–reduction goals, owing to increased demands on transportation. In particular, in the freight sector, incorporation of automation with electrification can meet necessities of sustainable transport. However, the profitability of battery electric heavy vehicles (BEHVs) remains a concern. This study found that ADS led to profitability of BEHVs, which remained profitable for increased travel ranges by a factor of four compared to that of BEHVs driven by humans. Up to 20% reduction in the total cost of ownership of BEHVs equipped with ADS could be achieved by optimizing the electric propulsion system along with the infrastructure for a given transportation task. In that case, the optimized propulsion system might not be similar to that of a BEHV with a human driver. To obtain the results, the total cost of ownership was minimized numerically for 3072 different transportation scenarios that showed the effects of travel distance, road hilliness, average reference speed, and vehicle size on the incorporated electrification and automation, and compared to that of conventional combustion–powered heavy vehicles.
  •  
3.
  • Ghandriz, Toheed, 1982, et al. (författare)
  • Optimization Based Design of Heterogeneous Truck Fleet and Electric Propulsion
  • 2016
  • Ingår i: Proceedings, ITSC. IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), November 1-4, 2016, Rio de Janeiro, Brazil. - 9781509018895 ; , s. Art no 7795575, Pages 328-335
  • Konferensbidrag (refereegranskat)abstract
    • Many researches have been focused on vehicle routing problem during past decades where subject vehicles are previously fully designed and ready to start operation. Further, extensive studies have been done on powertrain design irrespective of the routes where the vehicle is going to be employed. In the present paper, we try to define a new branch of problems where the vehicle design, in particular its propulsion system and loading capacity, is treated simultaneously with the routing problem. The focus is on optimization based design of heterogeneous electric truck fleet to perform a prescribed task with a lowest cost on an available set of routes. The approach is illustrated in a simple case study problem. It is shown that long heavy combination vehicles are energy-efficient but not cost-optimal on short routes.
  •  
4.
  • Ghandriz, Toheed, 1982, et al. (författare)
  • Optimization data on total cost of ownership for conventional and battery electric heavy vehicles driven by humans and by Automated Driving Systems
  • 2020
  • Ingår i: Data in Brief. - : Elsevier BV. - 2352-3409. ; 30
  • Tidskriftsartikel (refereegranskat)abstract
    • In road freight transport, the emerging technologies such as automated driving systems improve the mobility, productivity and fuel efficiency. However, the improved efficiency is not enough to meet environmental goals due to growing demands of transportation. Combining automated driving systems and electrified propulsion can substantially improve the road freight transport efficiency. However, the high cost of the battery electric heavy vehicles is a barrier hindering their adoption by the transportation companies. Automated driving systems, requiring no human driver on–board, make the battery electric heavy vehicles competitive to their conventional counterparts in a wider range of transportation tasks and use cases compared to the vehicles with human drivers. The presented data identify transportation tasks where the battery electric heavy vehicles driven by humans or by automated driving systems have lower cost of ownership than their conventional counterparts. The data were produced by optimizing the vehicle propulsion system together with the loading/unloading schemes and charging powers, with the objective of minimizing the total cost of ownership on 3072 different transportation scenarios, according to research article “Impact of automated driving systems on road freight transport and electrified propulsion of heavy vehicles” (Ghandriz et al., 2020). The data help understanding the effects of traveled distance, road hilliness and vehicle size on the total cost of ownership of the vehicles with different propulsion and driving systems. Data also include sensitivity tests on the uncertain parameters.
  •  
5.
  • Ghandriz, Toheed, 1982, et al. (författare)
  • Sensitivity Analysis of Optimal Energy Management in Plug-in Hybrid Heavy Vehicles
  • 2017
  • Ingår i: 2017 2nd IEEE International Conference on Intelligent Transportation Engineering (ICITE). - 9781509062737 ; , s. 320-327
  • Konferensbidrag (refereegranskat)abstract
    • Optimal energy management strategies of hybrid vehicles are computationally expensive when considering the entire trip ahead rather than a short upcoming horizon. Considering the entire representative trip is already needed in concept design stages of the vehicle. In order to come up with an appropriate design while minimizing the total ownership cost the energy management strategies must already be used together with early concept evaluations. To investigate the possibility of replacing the optimal energy management with simpler approaches, here, the sensitivity of optimal solution to some of vehicle parameters and traffic flow is studied. It is seen that a simpler approach, i.e. an instantaneous optimization, can be used, in case of smooth traffic flow, since the gain of optimal strategy in reduction of operational cost is less than 4% for different vehicle hardware setup and for selected representative driving cycle. Dynamic programming is used as a solution method for finding the optimal strategy.
  •  
6.
  • Ghandriz, Toheed, 1982, et al. (författare)
  • Transportation-mission-based Optimization of Heterogeneous Heavy-vehicle Fleet Including Electrified Propulsion
  • 2021
  • Ingår i: Energies. - : MDPI AG. - 1996-1073 .- 1996-1073. ; 14:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Commercial-vehicle manufacturers design vehicles to operate over a wide range of transportation tasks and driving cycles. However, certain possibilities of reducing emissions, manufacturing and operational costs from end vehicles are neglected if the target range of transportation tasks is narrow and known in advance, especially in case of electrified propulsion. Apart from real-time energy optimization, vehicle hardware can be meticulously tailored to best fit a known transportation task. As proposed in this study, a heterogeneous fleet of heavy-vehicles can be designed in a more cost- and energy-efficient manner, if the coupling between vehicle hardware, transportation mission, and infrastructure is considered during initial conceptual-design stages. To this end, a rather large optimization problem was defined and solved to minimize the total cost of fleet ownership in an integrated manner for a real-world case study. In the said case-study, design variables of optimization problem included mission, recharging infrastructure, loading--unloading scheme, number of vehicles of each type, number of trips, vehicle-loading capacity, selection between conventional, fully electric, and hybrid powertrains, size of internal-combustion engines and electric motors, number of axles being powered, and type and size of battery packs. This study demonstrated that by means of integrated fleet customization, battery-electric heavy-vehicles could strongly compete against their conventional combustion-powered counterparts. Primary focus has been put on optimizing vehicle propulsion, transport mission, infrastructure and fleet size rather than routing.
  •  
7.
  • Hellgren, Jonas, 1974, et al. (författare)
  • A Systematic Way of Choosing Driveline Confriguration and Sizing Components in Hybrid Vehicles
  • 2000
  • Ingår i: 2000 Future Transportation Technology Conference, August 21-23, 2000, in Costa Mesa, California, USA, 2000.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Energy saving in general and less polluting vehicles in specific, become more and more urgent topics. One reason is that, in a world where the demand for fast transportation is increasing, the risk of global warming is a fact. Hybrid Vehicles (HV:s) are proposed as a more environmentally friendly candidate than conventional vehicles. Nowadays, there are numerous different types of HV:s and the components can, in theory, be sized in infinite ways. There is no simple answer to how to choose driveline configuration and size components in a HV. This paper describes one method, Driveline Synthesis (DS), that systematically presents a suitable driveline, on the basis of demands and conditions. Examples of demands are driving cycle and emission free zones. Some conditions are fuel price, tax on pollution and discount rate. The most suitable driveline is defined as the most cost effective. Total cost is defined as the sum of: cost of components, fuel cost, cost of external energy and cost of pollution. Genetic algorithms are used as an optimization method.Two major types of drivelines are compared in a case study, a conventional bus with a diesel engine and automatic transmission versus a series hybrid bus with different types of primary power units (diesel engine or fuel cell) and storage devices (super capacitor or NiMH battery). DS gives reasonable answers but needs further validation and development. One conclusion from the work is that the most suitable driveline configuration depends very much on demands, conditions and present technology, i.e. HV:s are only preferable to conventional vehicles under special circumstances.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy