SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Henderson Brian E.) srt2:(2010-2014);pers:(Allen Naomi E.)"

Sökning: WFRF:(Henderson Brian E.) > (2010-2014) > Allen Naomi E.

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Zhaoming, et al. (författare)
  • Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:24, s. 6616-6633
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.
  •  
2.
  • Gu, Fangyi, et al. (författare)
  • Eighteen insulin-like growth factor pathway genes, circulating levels of IGF-I and its binding protein, and risk of prostate and breast cancer
  • 2010
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 19:11, s. 2877-2887
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Circulating levels of insulin-like growth factor I (IGF-I) and its main binding protein, IGF binding protein 3 (IGFBP-3), have been associated with risk of several types of cancer. Heritable factors explain up to 60% of the variation in IGF-I and IGFBP-3 in studies of adult twins.Methods: We systematically examined common genetic variation in 18 genes in the IGF signaling pathway for associations with circulating levels of IGF-I and IGFBP-3. A total of 302 single nucleotide polymorphisms (SNP) were genotyped in >5,500 Caucasian men and 5,500 Caucasian women from the Breast and Prostate Cancer Cohort Consortium.Results: After adjusting for multiple testing, SNPs in the IGF1 and SSTR5 genes were significantly associated with circulating IGF-I (P < 2.1 × 10−4); SNPs in the IGFBP3 and IGFALS genes were significantly associated with circulating IGFBP-3. Multi-SNP models explained R2 = 0.62% of the variation in circulating IGF-I and 3.9% of the variation in circulating IGFBP-3. We saw no significant association between these multi-SNP predictors of circulating IGF-I or IGFBP-3 and risk of prostate or breast cancers.Conclusion: Common genetic variation in the IGF1 and SSTR5 genes seems to influence circulating IGF-I levels, and variation in IGFBP3 and IGFALS seems to influence circulating IGFBP-3. However, these variants explain only a small percentage of the variation in circulating IGF-I and IGFBP-3 in Caucasian men and women.Impact: Further studies are needed to explore contributions from other genetic factors such as rare variants in these genes and variation outside of these genes.
  •  
3.
  • Schumacher, Fredrick R., et al. (författare)
  • A comprehensive analysis of common IGF1, IGFBP1 and IGFBP3 genetic variation with prospective IGF-I and IGFBP-3 blood levels and prostate cancer risk among
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:15, s. 3089-3101
  • Tidskriftsartikel (refereegranskat)abstract
    • The insulin-like growth factor (IGF) pathway has been implicated in prostate development and carcinogenesis. We conducted a comprehensive analysis, utilizing a resequencing and tagging single-nucleotide polymorphism (SNP) approach, between common genetic variation in the IGF1, IGF binding protein (BP) 1, and IGFBP3 genes with IGF-I and IGFBP-3 blood levels, and prostate cancer (PCa) risk, among Caucasians in the NCI Breast and Prostate Cancer Cohort Consortium. We genotyped 14 IGF1 SNPs and 16 IGFBP1/IGFBP3 SNPs to capture common [minor allele frequency (MAF) >= 5%] variation among Caucasians. For each SNP, we assessed the geometric mean difference in IGF blood levels (N = 5684) across genotypes and the association with PCa risk (6012 PCa cases/6641 controls). We present two-sided statistical tests and correct for multiple comparisons. A non-synonymous IGFBP3 SNP in exon 1, rs2854746 (Gly32Ala), was associated with IGFBP-3 blood levels (P-adj = 8.8 x 10(-43)) after adjusting for the previously established IGFBP3 promoter polymorphism A-202C (rs2854744); IGFBP-3 blood levels were 6.3% higher for each minor allele. For IGF1 SNP rs4764695, the risk estimates among heterozygotes was 1.01 (99% CI: 0.90-1.14) and 1.20 (99% CI: 1.06-1.37) for variant homozygotes with overall PCa risk. The corrected allelic P-value was 8.7 x 10(-3). IGF-I levels were significantly associated with PCa risk (P-trend = 0.02) with a 21% increase of PCa risk when compared with the highest quartile to the lowest quartile. We have identified SNPs significantly associated with IGFBP-3 blood levels, but none of these alter PCa risk; however, a novel IGF1 SNP, not associated with IGF-I blood levels, shows preliminary evidence for association with PCa risk among Caucasians.
  •  
4.
  • Schumacher, Fredrick R., et al. (författare)
  • Genome-wide association study identifies new prostate cancer susceptibility loci
  • 2011
  • Ingår i: Human Molecular Genetics. - London : IRL Press. - 0964-6906 .- 1460-2083. ; 20:19, s. 3867-3875
  • Tidskriftsartikel (refereegranskat)abstract
    • Prostate cancer (PrCa) is the most common non-skin cancer diagnosed among males in developed countries and the second leading cause of cancer mortality, yet little is known regarding its etiology and factors that influence clinical outcome. Genome-wide association studies (GWAS) of PrCa have identified at least 30 distinct loci associated with small differences in risk. We conducted a GWAS in 2782 advanced PrCa cases (Gleason grade >= 8 or tumor stage C/D) and 4458 controls with 571 243 single nucleotide polymorphisms (SNPs). Based on in silico replication of 4679 SNPs (Stage 1, P < 0.02) in two published GWAS with 7358 PrCa cases and 6732 controls, we identified a new susceptibility locus associated with overall PrCa risk at 2q37.3 (rs2292884, P = 4.3 x 10(-8)). We also confirmed a locus suggested by an earlier GWAS at 12q13 (rs902774, P = 8.6 x 10(-9)). The estimated per-allele odds ratios for these loci (1.14 for rs2292884 and 1.17 for rs902774) did not differ between advanced and non-advanced PrCa (case-only test for heterogeneity P = 0.72 and P = 0.61, respectively). Further studies will be needed to assess whether these or other loci are differentially associated with PrCa subtypes.
  •  
5.
  • Lindstroem, Sara, et al. (författare)
  • Common genetic variants in prostate cancer risk prediction-results from the NCI breast and prostate cancer cohort consortium (BPC3)
  • 2012
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - 1055-9965 .- 1538-7755. ; 21:3, s. 437-444
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: One of the goals of personalized medicine is to generate individual risk profiles that could identify individuals in the population that exhibit high risk. The discovery of more than two-dozen independent single-nucleotide polymorphism markers in prostate cancer has raised the possibility for such risk stratification. In this study, we evaluated the discriminative and predictive ability for prostate cancer risk models incorporating 25 common prostate cancer genetic markers, family history of prostate cancer, and age.Methods: We fit a series of risk models and estimated their performance in 7,509 prostate cancer cases and 7,652 controls within the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). We also calculated absolute risks based on SEER incidence data.Results: The best risk model (C-statistic = 0.642) included individual genetic markers and family history of prostate cancer. We observed a decreasing trend in discriminative ability with advancing age (P = 0.009), with highest accuracy in men younger than 60 years (C-statistic = 0.679). The absolute ten-year risk for 50-year-old men with a family history ranged from 1.6% (10th percentile of genetic risk) to 6.7% (90th percentile of genetic risk). For men without family history, the risk ranged from 0.8% (10th percentile) to 3.4% (90th percentile).Conclusions: Our results indicate that incorporating genetic information and family history in prostate cancer risk models can be particularly useful for identifying younger men that might benefit from prostate-specific antigen screening.Impact: Although adding genetic risk markers improves model performance, the clinical utility of these genetic risk models is limited.
  •  
6.
  • Lindström, Sara, et al. (författare)
  • A large study of androgen receptor germline variants and their relation to sex hormone levels and prostate cancer risk : Results from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium
  • 2010
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 95:9, s. E121-E127
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Androgens are key regulators of prostate gland maintenance and prostate cancer growth, and androgen deprivation therapy has been the mainstay of treatment for advanced prostate cancer for many years. A long-standing hypothesis has been that inherited variation in the androgen receptor (AR) gene plays a role in prostate cancer initiation. However, studies to date have been inconclusive and often suffered from small sample sizes. Objective and Methods: We investigated the association of AR sequence variants with circulating sex hormone levels and prostate cancer risk in 6058 prostate cancer cases and 6725 controls of Caucasian origin within the Breast and Prostate Cancer Cohort Consortium. We genotyped a highly polymorphic CAG microsatellite in exon 1 and six haplotype tagging single nucleotide polymorphisms and tested each genetic variant for association with prostate cancer risk and with sex steroid levels. Results: We observed no association between AR genetic variants and prostate cancer risk. However, there was a strong association between longer CAG repeats and higher levels of testosterone (P = 4.73 × 10−5) and estradiol (P = 0.0002), although the amount of variance explained was small (0.4 and 0.7%, respectively). Conclusions: This study is the largest to date investigating AR sequence variants, sex steroid levels, and prostate cancer risk. Although we observed no association between AR sequence variants and prostate cancer risk, our results support earlier findings of a relation between the number of CAG repeats and circulating levels of testosterone and estradiol.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy