SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Henkel Terry W.) "

Search: WFRF:(Henkel Terry W.)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Householder, John Ethan, et al. (author)
  • One sixth of Amazonian tree diversity is dependent on river floodplains
  • 2024
  • In: NATURE ECOLOGY & EVOLUTION. - 2397-334X.
  • Journal article (peer-reviewed)abstract
    • Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.
  •  
2.
  • Luize, Bruno Garcia, et al. (author)
  • Geography and ecology shape the phylogenetic composition of Amazonian tree communities
  • 2024
  • In: JOURNAL OF BIOGEOGRAPHY. - 0305-0270 .- 1365-2699.
  • Journal article (peer-reviewed)abstract
    • Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and v & aacute;rzea forest types, the phylogenetic composition varies by geographic region, but the igap & oacute; and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R-2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R-2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions.
  •  
3.
  • Peripato, Vinicius, et al. (author)
  • More than 10,000 pre-Columbian earthworks are still hidden throughout Amazonia
  • 2023
  • In: Science (New York, N.Y.). - 1095-9203. ; 382:6666, s. 103-109
  • Journal article (peer-reviewed)abstract
    • Indigenous societies are known to have occupied the Amazon basin for more than 12,000 years, but the scale of their influence on Amazonian forests remains uncertain. We report the discovery, using LIDAR (light detection and ranging) information from across the basin, of 24 previously undetected pre-Columbian earthworks beneath the forest canopy. Modeled distribution and abundance of large-scale archaeological sites across Amazonia suggest that between 10,272 and 23,648 sites remain to be discovered and that most will be found in the southwest. We also identified 53 domesticated tree species significantly associated with earthwork occurrence probability, likely suggesting past management practices. Closed-canopy forests across Amazonia are likely to contain thousands of undiscovered archaeological sites around which pre-Columbian societies actively modified forests, a discovery that opens opportunities for better understanding the magnitude of ancient human influence on Amazonia and its current state.
  •  
4.
  • Tedersoo, Leho, et al. (author)
  • Global diversity and geography of soil fungi
  • 2014
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 346:6213, s. artikel nr 1256688-
  • Journal article (peer-reviewed)abstract
    • Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework.
  •  
5.
  • Tedersoo, Leho, et al. (author)
  • Global patterns in endemicity and vulnerability of soil fungi.
  • 2022
  • In: Global change biology. - : Wiley. - 1365-2486 .- 1354-1013. ; 28:22, s. 6696-6710
  • Journal article (peer-reviewed)abstract
    • Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.
  •  
6.
  • ter Steege, Hans, et al. (author)
  • Mapping density, diversity and species-richness of the Amazon tree flora
  • 2023
  • In: COMMUNICATIONS BIOLOGY. - 2399-3642. ; 6:1
  • Journal article (peer-reviewed)abstract
    • Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution. A study mapping the tree species richness in Amazonian forests shows that soil type exerts a strong effect on species richness, probably caused by the areas of these forest types. Cumulative water deficit, tree density and temperature seasonality affect species richness at a regional scale.
  •  
7.
  • Gohar, Daniyal, et al. (author)
  • Global diversity and distribution of mushroom-inhabiting bacteria
  • 2022
  • In: Environmental Microbiology Reports. - : John Wiley & Sons. - 1758-2229 .- 1758-2229. ; 14:2, s. 254-264
  • Journal article (peer-reviewed)abstract
    • Mushroom-forming fungi are important sources of food and medicine in many regions of the world, and their development and health are known to depend on various microbes. Recent studies have examined the structure of mushroom-inhabiting bacterial (MIB) communities and their association with local environmental variables, but global-scale diversity and determinants of these communities remain poorly understood. Here we examined the MIB global diversity and community composition in relation to climate, soil and host factors. We found a core global mushroom microbiome, accounting for 30% of sequence reads, while comprising a few bacterial genera such as Halomonas, Serratia, Bacillus, Cutibacterium, Bradyrhizobium and Burkholderia. Our analysis further revealed an important role of host phylogeny in shaping the communities of MIB, whereas the effects of climate and soil factors remained negligible. The results suggest that the communities of MIB and free-living bacteria are structured by contrasting community assembly processes and that fungal-bacterial interactions are an important determinant of MIB community structure.
  •  
8.
  • Kennedy, Peter G, et al. (author)
  • Scaling up : examining the macroecology of ectomycorrhizal fungi.
  • 2012
  • In: Molecular Ecology. - 0962-1083 .- 1365-294X. ; 21:17, s. 4151-4
  • Journal article (peer-reviewed)abstract
    • Ectomycorrhizal (ECM) fungi play major ecological roles in temperate and tropical ecosystems. Although the richness of ECM fungal communities and the factors controlling their structure have been documented at local spatial scales, how they vary at larger spatial scales remains unclear. In this issue of Molecular Ecology, Tedersoo et al. (2012) present the results of a meta-analysis of ECM fungal community structure that sheds important new light on global-scale patterns. Using data from 69 study systems and 6021 fungal species, the researchers found that ECM fungal richness does not fit the classic latitudinal diversity gradient in which species richness peaks at lower latitudes. Instead, richness of ECM fungal communities has a unimodal relationship with latitude that peaks in temperate zones. Intriguingly, this conclusion suggests the mechanisms driving ECM fungal community richness may differ from those of many other organisms, including their plant hosts. Future research will be key to determine the robustness of this pattern and to examine the processes that generate and maintain global-scale gradients of ECM fungal richness.
  •  
9.
  • Tedersoo, Leho, et al. (author)
  • Towards global patterns in the diversity and community structure of ectomycorrhizal fungi.
  • 2012
  • In: Molecular Ecology. - 0962-1083 .- 1365-294X. ; 21:17, s. 4160-70
  • Journal article (peer-reviewed)abstract
    • Global species richness patterns of soil micro-organisms remain poorly understood compared to macro-organisms. We use a global analysis to disentangle the global determinants of diversity and community composition for ectomycorrhizal (EcM) fungi-microbial symbionts that play key roles in plant nutrition in most temperate and many tropical forest ecosystems. Host plant family has the strongest effect on the phylogenetic community composition of fungi, whereas temperature and precipitation mostly affect EcM fungal richness that peaks in the temperate and boreal forest biomes, contrasting with latitudinal patterns of macro-organisms. Tropical ecosystems experience rapid turnover of organic material and have weak soil stratification, suggesting that poor habitat conditions may contribute to the relatively low richness of EcM fungi, and perhaps other soil biota, in most tropical ecosystems. For EcM fungi, greater evolutionary age and larger total area of EcM host vegetation may also contribute to the higher diversity in temperate ecosystems. Our results provide useful biogeographic and ecological hypotheses for explaining the distribution of fungi that remain to be tested by involving next-generation sequencing techniques and relevant soil metadata.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9
Type of publication
journal article (9)
Type of content
peer-reviewed (9)
Author/Editor
Henkel, Terry W. (9)
Bahram, Mohammad (4)
Tedersoo, Leho (4)
Phillips, Oliver L. (4)
ter Steege, Hans (4)
Barlow, Jos (4)
show more...
Berenguer, Erika (4)
do Amaral, Dário Dan ... (4)
Andrade, Ana (4)
Aymard C, Gerardo A. (4)
Bánki, Olaf S. (4)
Baraloto, Chris (4)
Camargo, José Luís (4)
Castellanos, Hernán (4)
Castilho, Carolina V ... (4)
Costa, Flávia R.C. (4)
Demarchi, Layon O. (4)
Hoffman, Bruce (4)
Terborgh, John (4)
Smith, Matthew E. (4)
Wittmann, Florian (4)
Quaresma, Adriano Co ... (4)
Assis, Rafael L. (4)
Coelho, Luiz de Souz ... (4)
Salomao, Rafael P. (4)
Magnusson, William E ... (4)
Sabatier, Daniel (4)
Molino, Jean-Francoi ... (4)
Irume, Mariana Victo ... (4)
Martins, Maria Pires (4)
Ramos, Jose Ferreira (4)
Pitman, Nigel C. A. (4)
Luize, Bruno Garcia (4)
Nunez Vargas, Percy (4)
Venticinque, Eduardo ... (4)
Manzatto, Angelo Gil ... (4)
Casula, Katia Regina (4)
Honorio Coronado, Eu ... (4)
Monteagudo Mendoza, ... (4)
Feldpausch, Ted R. (4)
Engel, Julien (4)
Petronelli, Pascal (4)
Zartman, Charles Eug ... (4)
Killeen, Timothy J. (4)
Marimon, Beatriz S. (4)
Marimon-Junior, Ben ... (4)
Schietti, Juliana (4)
Sousa, Thaiane R. (4)
Vasquez, Rodolfo (4)
Mostacedo, Bonifacio (4)
show less...
University
University of Gothenburg (6)
Uppsala University (4)
Swedish University of Agricultural Sciences (3)
Chalmers University of Technology (1)
Language
English (9)
Research subject (UKÄ/SCB)
Natural sciences (7)
Agricultural Sciences (3)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view