SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Henriksson Roger) ;pers:(Guo Dongsheng)"

Sökning: WFRF:(Henriksson Roger) > Guo Dongsheng

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Ulrika, et al. (författare)
  • Epidermal growth factor receptor family (EGFR, ErbB2-4) in gliomas and meningiomas
  • 2004
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 108:2, s. 135-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Overexpression of epidermal growth factor receptor (EGFR, ErbB1) correlates with enhanced malignant potential of many human tumor types including glioblastoma multiforme. The significance of EGFR expression in meningiomas is, however, unclear. Reports regarding the other EGFR family members, ErbB2-4, in brain tumors are sparse. In this study, the expression of the EGFR family members was analyzed in relation to various parameters for the clinical importance of these receptors in 44 gliomas and 26 meningiomas. In gliomas, quantitative real-time reverse transcription (RT)-PCR revealed the highest EGFR mRNA expression in high-grade gliomas, while ErbB2 and ErbB3 mRNA were detected only in a few high-grade gliomas. In contrast, ErbB4 expression was most pronounced in low-grade gliomas. Immunohistochemistry showed significantly higher EGFR protein expression in high-grade gliomas compared to low-grade gliomas (P= 0.004). ErbB2 protein expression was mainly seen in high-grade gliomas. ErbB3 protein expression was low in all gliomas analyzed. ErbB4 protein expression was significantly higher in low-grade gliomas than in high-grade gliomas (P= 0.007). In meningiomas, quantitative real-time RT-PCR revealed expression of EGFR, ErbB2, and ErbB4 mRNA in the majority of the tumors. ErbB3 was detected in only one of the meningiomas analyzed. Immunohistochemistry demonstrated high ErbB2 protein expression in meningiomas. An intriguing observation in astrocytomas and oligodendrogliomas grade II, was a significantly decreased overall survival for patients with high EGFR protein expression (P= 0.04). The high ErbB4 expression in low-grade compared to high-grade gliomas might suggest that ErbB4 acts as a suppressor of malignant transformation in brain tumors, which is in line with previous studies in other tumor types.
  •  
2.
  • Guo, Dongsheng, et al. (författare)
  • Perinuclear leucine-rich repeats and immunoglobulin-like domain proteins (LRIG1-3) as prognostic indicators in astrocytic tumors
  • 2006
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 111:3, s. 238-346
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously characterized three human leucine-rich repeats and immunoglobulin-like domains (LRIG) genes and proteins, named LRIG1-3 and proposed that they may act as suppressors of tumor growth. The LRIG1 transmembrane protein antagonizes the activity of epidermal growth factor receptor family receptor tyrosine kinases. In this study, we evaluated the mRNA expression level of LRIG1-3 in human glioma cell lines and control-matched glioma tissues, characterized the sub-cellular localization of an LRIG3–GFP fusion protein, and analyzed the relationship between sub-cellular localization of LRIG1-3 and clinical parameters in 404 astrocytic tumors by immunohistochemistry. LRIG1-3 mRNA was detected in all human glioma cell lines and matched glioma samples, with large differences in the expression levels. Ectopically expressed LRIG3–GFP localized to perinuclear and cytoplasmic compartments, and to the cell surface of transfected glioma cells. Perinuclear staining of LRIG1-3 was associated with low WHO grade and better survival of the patients. Perinuclear staining of LRIG3 was associated with a lower proliferation index and was in addition to tumor grade, an independent prognostic factor. Furthermore, within the groups of grade III and grade IV tumors, perinuclear staining of LRIG3 significantly correlated with better survival. These results indicate that expression and sub-cellular localization of LRIG1-3 might be of importance in the pathogenesis and prognosis of astrocytic tumors.
  •  
3.
  • Guo, Dongsheng, et al. (författare)
  • The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in ascidiacea
  • 2004
  • Ingår i: Genomics. - : Elsevier BV. - 0888-7543 .- 1089-8646. ; 84:1, s. 157-165
  • Tidskriftsartikel (refereegranskat)abstract
    • Human LRIG1 (formerly LIG1), human LRIG2, and mouse Lrig1 (also known as Lig-1) encode integral membrane proteins. The human genes are located at chromosomes 3p14 and 1p13, which are regions frequently deleted in human cancers. We have searched for additional members of the LRIG family and by molecular cloning identified human LRIG3 and its mouse ortholog Lrig3. Human LRIG3 is located at chromosome 12q13. In silico analysis of public databases revealed a mouse Lrig2 mRNA, three LRIG homologs in the puffer fish Fugu rubripes, and one LRIG homolog in the ascidian tunicate Ciona intestinalis. The human and mouse LRIG polypeptides have the same predicted domain organization: a signal peptide, 15 tandem leucine-rich repeats with cysteine-rich N- and C-flanking domains, three immunoglobulin-like domains, a transmembrane domain, and a cytoplasmic tail. The extracellular part—especially the IgC2.2 domain, the transmembrane domain, and the membrane-proximal part of the cytoplasmic tail—are the most conserved regions. Northern blot analysis and real-time RT-PCR revealed that the three LRIG paralogs are widely expressed in human and mouse tissues. In conclusion, the LRIG gene family was found to have three widely expressed mammalian paralogs, corresponding orthologs in fish, and a homolog in Ascidiacea.
  •  
4.
  • Hedman, Håkan, et al. (författare)
  • Is LRIG1 a tumour suppressor gene at chromosome 3p14.3?
  • 2002
  • Ingår i: Acta Oncologica. - : Informa UK Limited. - 0284-186X .- 1651-226X. ; 41:4, s. 352-354
  • Tidskriftsartikel (refereegranskat)abstract
    • The LRIG1 gene (formerly LIG-1), recently cloned by us, displays structural similarities to the Drosophila Kek I gene. Kek I encodes a cell surface protein, Kekkon-1, which inhibits epidermal growth factor receptor-mediated signalling. We localized the LRIG1 gene to chromosome band 3p14.3, a region known to be deleted in various human cancers. In the present study LRIG1 gene expression was examined in different tumour cell lines and corresponding normal tissues by real-time RT-PCR. In many tumour cell lines, LRIG1 expression appeared absent or was down regulated compared to corresponding normal tissues. The results are consistent with LRIG1 being a tumour suppressor gene in humans. However, further studies are justified to elucidate the explicit role of LRIG1 as a negative regulator of oncogenesis.
  •  
5.
  • Holmlund, Camilla, 1969-, et al. (författare)
  • Characterization and tissue-specific expression of human LRIG2
  • 2004
  • Ingår i: Gene. - : Elsevier BV. - 0378-1119 .- 1879-0038. ; 332, s. 35-43
  • Tidskriftsartikel (refereegranskat)abstract
    • We have recently identified and cloned the human LRIG1 gene (formerly LIG1). LRIG1 is a predicted integral membrane protein with a domain organization reminiscent of the Drosophila epidermal growth factor (EGF)-receptor antagonist Kekkon-1. We have searched for additional members of the human LRIG family and identified LRIG2 (KIAA0806). The LRIG2 gene was localized to chromosome 1p13 and had an open reading frame of 1065 amino acids. The LRIG2 protein was predicted to have the same domain organization as LRIG1 with a signal peptide, an extracellular part containing15 leucine-rich repeats and three immunoglobulin-like domains, a transmembrane domain, and a cytoplasmic tail. The LRIG2 amino acid sequence was 47% identical to human LRIG1 and mouse Lrig1 (also known as Lig-1). Northern blotting and RT-PCR revealed LRIG2 transcripts in all tissues analyzed. Quantitative real-time RT-PCR showed the most prominent RNA expression in skin, uterus, ovary, kidney, brain, small intestine, adrenal gland, and stomach. Immunoblotting of COS-7 cell lysates demonstrated that heterologously expressed human LRIG2 had an apparent molecular weight of 132 kDa under reducing gel-running conditions. N-glycosidase F treatment resulted in a reduction of the apparent molecular weight to 107 kDa, showing that LRIG2 was a glycoprotein carrying N-linked oligosaccharides. Cell surface biotinylation experiments and confocal fluorescence laser microscopy demonstrated expression of LRIG2 both at the cell surface and in the cytoplasm. LRIG2 was detected in tissue lysates from stomach, prostate, lung, and fetal brain by immunoblotting. In conclusion, LRIG2 was found to be a glycoprotein which was encoded by a gene on human chromosome 1p13 and its mRNA was present in all tissues analyzed.
  •  
6.
  • Nilsson, Jonas, et al. (författare)
  • Cloning, characterization and expression of human LIG1
  • 2001
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 284:5, s. 1155-1161
  • Tidskriftsartikel (refereegranskat)abstract
    • Growth factor receptors are frequently amplified and over-expressed in various human cancers. Recently, a Drosophila cell surface protein, Kekkon-1, was found to participate in an epidermal growth factor (EGF) driven negative feedback loop. Kekkon-1 is induced by EGF, binds to the EGF-receptor, and inhibits receptor-mediated signaling. Here, we have searched for human genes with homologies to Kekkon-1 and identified human LIG1. The gene is the human homologue of mouse Lig-1 and is located on chromosome band 3p14, a region frequently deleted in various human cancers. It is predicted to encode a transmembrane cell-surface protein with extracellular leucine-rich repeats and immunoglobulin-like domains. LIG1 mRNA was detected in all tissues analyzed. The highest and lowest relative expression levels were found in brain and spleen, respectively, and differed by more than 200-fold. Taken together, our data are compatible with a role for LIG1 as a growth and tumor suppressor in human tissues.
  •  
7.
  • Sjödin, Anna, et al. (författare)
  • Dysregulated secretoglobin expression in human lung cancers
  • 2003
  • Ingår i: Lung Cancer. - 0169-5002 .- 1872-8332. ; 41:1, s. 49-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipophilins A, B, C, mammaglobin, and uteroglobin are members of the secretoglobin family of small, secreted, proteins. The functions of these proteins are not well understood but uteroglobin has been implicated in the development of cancers. Uteroglobin is known to be highly expressed in normal lung and down-regulated in lung cancers but expression of the other secretoglobins in normal lung and lung neoplasms have not been investigated. Therefore, we developed quantitative real-time reverse transcription (RT-) PCR assays for the different secretoglobins and evaluated their expression in normal and neoplastic lung tissues. The secretoglobin transcript levels were quantitated by real-time RT-PCR in samples from three normal lungs, 24 lung tumors including six small cell lung carcinomas, seven adenocarcinomas, and five squamous cell carcinomas, and in cell lines from three small cell lung carcinomas and one mesothelioma. Uteroglobin was confirmed to be abundantly expressed in normal lung and the different lung tumors showed down-regulated uteroglobin expression. Of the other secretoglobins, only lipophilin C was detected in normal lung, albeit at low levels. The lung tumors, however, frequently showed neo- or up-regulation of lipophilins A, B, C, and mammaglobin. The results constitute the first quantitative evaluation of secretoglobin expression in normal and neoplastic human lung tissues and demonstrate dysregulation in various human lung cancers. These findings could have important biological and diagnostic implications.
  •  
8.
  • Sjödin, Anna, et al. (författare)
  • Secretoglobins in the human pituitary : high expression of lipophilin B and its down-regulation in pituitary adenomas
  • 2005
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 109:4, s. 381-386
  • Tidskriftsartikel (refereegranskat)abstract
    • Secretoglobins are small secreted proteins, the expression of which has mostly been associated with secretory mucosal epithelia. Several secretoglobins have been implicated in the development of various human cancers. Allelic deletions of chromosome 11q13 correlates with the invasiveness of pituitary tumors. Intriguingly, several secretoglobin genes are located on 11q13; however, for most of these genes the expression in the pituitary and pituitary tumors have not been investigated. Antibodies specific for the secretoglobin lipophilin B (SCGB1D2, BU101) were developed and used in an immunohistochemical analysis of a human normal tissue microarray. Prominent lipophilin B immunoreactivity was found in the secretory cells of the anterior pituitary. Eight of nine analyzed pituitary adenomas showed a reduction in lipophilin B immunoreactivity compared to normal pituitary. However, there was no apparent association between lipophilin B immunoreactivity and hormone production or tumor invasiveness. Expression of eight different secretoglobin mRNAs were analyzed in normal pituitary and the pituitary adenoma cell line HP75 by highly specific quantitative real-time reverse transcription-PCR assays. Lipophilins B and C (SCGB2A1, mammaglobin B) were the most prominently expressed secretoglobin mRNAs in the pituitary. No secretoglobin mRNA was detected in the HP75 cells. The present report demonstrates, for the first time, lipophilin B expression in the pituitary and its apparent down-regulation in pituitary adenomas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy