SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Henriksson Roger) ;pers:(Hedman Håkan)"

Sökning: WFRF:(Henriksson Roger) > Hedman Håkan

  • Resultat 1-10 av 61
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ljuslinder, Ingrid, 1968-, et al. (författare)
  • LRIG1 expression in colorectal cancer
  • 2007
  • Ingår i: Acta Oncologica. - : Informa UK Limited. - 0284-186X .- 1651-226X. ; 46:8, s. 1118-1122
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Andersson, Ulrika, et al. (författare)
  • Epidermal growth factor receptor family (EGFR, ErbB2-4) in gliomas and meningiomas
  • 2004
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 108:2, s. 135-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Overexpression of epidermal growth factor receptor (EGFR, ErbB1) correlates with enhanced malignant potential of many human tumor types including glioblastoma multiforme. The significance of EGFR expression in meningiomas is, however, unclear. Reports regarding the other EGFR family members, ErbB2-4, in brain tumors are sparse. In this study, the expression of the EGFR family members was analyzed in relation to various parameters for the clinical importance of these receptors in 44 gliomas and 26 meningiomas. In gliomas, quantitative real-time reverse transcription (RT)-PCR revealed the highest EGFR mRNA expression in high-grade gliomas, while ErbB2 and ErbB3 mRNA were detected only in a few high-grade gliomas. In contrast, ErbB4 expression was most pronounced in low-grade gliomas. Immunohistochemistry showed significantly higher EGFR protein expression in high-grade gliomas compared to low-grade gliomas (P= 0.004). ErbB2 protein expression was mainly seen in high-grade gliomas. ErbB3 protein expression was low in all gliomas analyzed. ErbB4 protein expression was significantly higher in low-grade gliomas than in high-grade gliomas (P= 0.007). In meningiomas, quantitative real-time RT-PCR revealed expression of EGFR, ErbB2, and ErbB4 mRNA in the majority of the tumors. ErbB3 was detected in only one of the meningiomas analyzed. Immunohistochemistry demonstrated high ErbB2 protein expression in meningiomas. An intriguing observation in astrocytomas and oligodendrogliomas grade II, was a significantly decreased overall survival for patients with high EGFR protein expression (P= 0.04). The high ErbB4 expression in low-grade compared to high-grade gliomas might suggest that ErbB4 acts as a suppressor of malignant transformation in brain tumors, which is in line with previous studies in other tumor types.
  •  
3.
  • Andersson, Ulrika, et al. (författare)
  • Rapid induction of long-lasting drug efflux activity in brain vascular endothelial cells but not malignant glioma following irradiation
  • 2002
  • Ingår i: Medical Oncology. - 1357-0560 .- 1559-131X. ; 19:1, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of radiotherapy on malignant glioma multidrug resistance to chemotherapy was evaluated because patients with glioma often are treated with a combination of radiotherapy and chemotherapy. Multidrug resistance gene (MDR1, mdr1a, and mdr1b) transcripts were found in human and rat glioma cell lines. P-Glycoprotein (Pgp) was immunohistochemically detected in glioma cell lines and in the rat brain vascular endothelial cell line (RBE4). A multidrug resistance pump efflux activity assay demonstrated increased calcein efflux of RBE4 endothelial cells, but not glioma cells, 2 h after irradiation and still increased 14 d after irradiation. The increased efflux was equally inhibited by verapamil with or without irradiation. In the rat intracranial glioma model (BT4C), Pgp was demonstrated in capillary endothelial cells of the tumor tissue and surrounding normal brain, but not in tumor cells. The expression of gene transcripts or Pgp was not affected by irradiation. The results indicate that long-lasting verapamil-resistant drug efflux mechanisms are activated in brain endothelial cells after irradiation. The results might explain the poor efficacy of chemotherapy following radiotherapy and contribute to consideration of new treatment strategies in the management of malignant glioma.
  •  
4.
  • Asklund, Thomas, et al. (författare)
  • Synergistic Killing of Glioblastoma Stem-like Cells by Bortezomib and HADC Inhibitors.
  • 2012
  • Ingår i: Anticancer Research. - : International Institute of Anticancer Research. - 0250-7005 .- 1791-7530. ; 32:7, s. 2407-2413
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The malignant brain tumour glioblastoma is a devastating disease that remains a therapeutic challenge. Materials and Methods: Effects of combinations of the US Food and Drug Administation (FDA) approved proteasome inhibitor bortezomib and the histone deacetylase (HDAC) inhibitors vorinostat, valproic acid and sodium phenylbutyrate were studied on primary glioblastoma stem cell lines and conventional glioblastoma cell lines. Cell survival, proliferation and death were analyzed by fluorometric microculture cytotoxicity assay (FMCA), propidium iodide labeling and flow cytometry, and cell cloning through limiting dilution and live-cell bright-field microscopy. Results: Bortezomib and the HDAC inhibitors showed synergistic cell killing at clinically relevant drug concentrations, while the conventional cell lines cultured in serum-containing medium were relatively resistant to the same treatments. Conclusion: These findings of synergistic glioblastoma stem cell killing by bortezomib and three different FDA-approved HDAC inhibitors confirm and expand previous observations on co-operative effects between these classes of drugs.
  •  
5.
  • Faraz, Mahmood, et al. (författare)
  • A protein interaction network centered on leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) regulates growth factor receptors
  • 2018
  • Ingår i: Journal of Biological Chemistry. - : The American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 293:9, s. 3421-3435
  • Tidskriftsartikel (refereegranskat)abstract
    • Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a tumor suppressor and a negative regulator of several receptor tyrosine kinases. The molecular mechanisms by which LRIG1 mediates its tumor suppressor effects and regulates receptor tyrosine kinases remain incompletely understood. Here, we performed a yeast two-hybrid screen to identify novel LRIG1-interacting proteins and mined data from the BioPlex (biophysical interactions of ORFeome-based complexes) protein interaction data repository. The putative LRIG1 interactors identified in the screen were functionally evaluated using a triple co-transfection system in which HEK293 cells were co-transfected with platelet-derived growth factor receptor α, LRIG1, and shRNAs against the identified LRIG1 interactors. The effects of the shRNAs on the ability of LRIG1 to down-regulate platelet-derived growth factor receptor α expression were evaluated. On the basis of these results, we present an LRIG1 protein interaction network with many newly identified components. The network contains the apparently functionally important LRIG1-interacting proteins RAB4A, PON2, GAL3ST1, ZBTB16, LRIG2, CNPY3, HLA-DRA, GML, CNPY4, LRRC40, and LRIG3, together with GLRX3, PTPRK, and other proteins. In silico analyses of The Cancer Genome Atlas data sets revealed consistent correlations between the expression of the transcripts encoding LRIG1 and its interactors ZBTB16 and PTPRK and inverse correlations between the transcripts encoding LRIG1 and GLRX3. We further studied the LRIG1 function–promoting paraoxonase PON2 and found that it co-localized with LRIG1 in LRIG1-transfected cells. The proposed LRIG1 protein interaction network will provide leads for future studies aiming to understand the molecular functions of LRIG1 and the regulation of growth factor signaling.
  •  
6.
  • Faraz, Mahmood, 1978- (författare)
  • Investigations of Leucine-rich repeats and immunoglobulin-like domain-proteins 1 and 2 (LRIG1 and LRIG2) and their genes in cancer
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The mammalian leucine-rich repeats and immunoglobulin-like domains (LRIG) gene family consists of three different members, LRIG1, LRIG2, and LRIG3. These genes are expressed in all human and mouse tissues analyzed to date. All LRIG proteins share similar and evolutionary conserved structural domains including a leucine-rich repeat domain, three immunoglobulin-like domains, a transmembrane domain, and a cytosolic tail. Since the discovery of this family, around 20 years ago, various research groups have shown the importance of this family in cancer biology and prognosis. The aim of this thesis was to further investigate the role of LRIG1 and LRIG2 in cancer.To investigate the roles of LRIG1 and LRIG2 in physiology and gliomagenesis, we generated Lrig1- and Lrig2-deficient mice and induced platelet-derived growth factor B (PDGFB)-driven gliomagenesis. We studied the effects of Lrig2 ablation on mouse development and survival and investigated if the ablation of Lrig1 or Lrig2 affects the incidence or malignancy of induced gliomas. We also investigated if Lrig2 ablation affects Pdgfr signaling in mouse embryonic fibroblasts (MEFs). Additionally, we analyzed the effects of ectopic LRIG1 expression in human primary glioblastoma cell lines TB101 and TB107, in vivo and in vitro. We reported no macroscopic anatomical defect but reduced growth and increased spontaneous mortality rate in Lrig2-deficient mice. However, the Lrig2-deficient mice were protected against the induced gliomagenesis. Lrig2-deficient MEFs showed faster kinetics of induction of immediate-early genes in response to PDGFB stimulation, whereas the phosphorylations of Pdgfra, Pdgfrb, Erk1/2, and Akt1 appeared unaltered. Lrig1-heterozygote mice showed a higher incidence of high-grade tumors (grade IV) compared to wildtype mice, demonstrating a haploinsufficient function of Lrig1. LRIG1 overexpression suppressed TB107 cell invasion in vivo and in vitro, which was partially mediated through the suppression of the MET receptor tyrosine kinase.To identify LRIG1-interacting proteins, we used the yeast-two hybrid system and data-mined the Bio-Plex network of high throughput protein-protein interaction database. To study the function of interactors, we used a triple co-transfection system to overexpress LRIG1 and PDGFRA and downregulate endogenous levels of interactors by short hairpin RNAs (shRNAs), simultaneously. This analysis demonstrated that CNPY3, CNPY4, GAL3ST1, GML, HLA-DRA, LRIG2, LRIG3, LRRC40, PON2, RAB4A, and ZBTB16 were important for the PDGFRA-downregulating function of LRIG1.To investigate the clinical significance of LRIG1 copy number alterations (CNAs) in breast cancer, we used droplet digital PCR (ddPCR) to analyze 423 breast cancer tumors. We found that LRIG1 CNAs were significantly different in steroid-receptor-positive vs steroid-receptor-negative tumors and in ERBB2-amplified vs ERBB2-non-amplified tumors. In the whole cohort, patients with LRIG1 loss or gain had a worse metastasis-free survival than patients with normal LRIG1 copy numbers, however, among the early-stage breast cancer subgroup, this difference was not significant. In summary, Lrig1 behaved like a haploinsufficient tumor suppressor gene in malignant glioma, whereas Lrig2 appeared to promote malignant glioma. Our functional analysis of LRIG1 interactome uncovered several unanticipated and novel proteins that might be important for the regulation of receptor tyrosine kinases by LRIG1. LRIG1 CNAs predicted metastasis-free survival time in breast cancer. Hopefully, our findings might lead to a better understanding of the regulation of growth factor signaling and its importance in cancer biology and prognosis. 
  •  
7.
  • Faraz, Mahmood, et al. (författare)
  • LRIG1 gene copy number analysis by ddPCR and correlations to clinical factors in breast cancer
  • 2020
  • Ingår i: BMC Cancer. - : BioMed Central. - 1471-2407 .- 1471-2407. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) copy number alterations and unbalanced gene recombination events have been reported to occur in breast cancer. Importantly, LRIG1 loss was recently shown to predict early and late relapse in stage I-II breast cancer.Methods: We developed droplet digital PCR (ddPCR) assays for the determination of relative LRIG1 copy numbers and used these assays to analyze LRIG1 in twelve healthy individuals, 34 breast tumor samples previously analyzed by fluorescence in situ hybridization (FISH), and 423 breast tumor cytosols.Results: Four of the LRIG1/reference gene assays were found to be precise and robust, showing copy number ratios close to 1 (mean, 0.984; standard deviation, +/-0.031) among the healthy control population. The correlation between the ddPCR assays and previous FISH results was low, possibly because of the different normalization strategies used. One in 34 breast tumors (2.9%) showed an unbalanced LRIG1 recombination event. LRIG1 copy number ratios were associated with the breast cancer subtype, steroid receptor status, ERBB2 status, tumor grade, and nodal status. Both LRIG1 loss and gain were associated with unfavorable metastasis-free survival; however, they did not remain significant prognostic factors after adjustment for common risk factors in the Cox regression analysis. Furthermore, LRIG1 loss was not significantly associated with survival in stage I and II cases.Conclusions: Although LRIG1 gene aberrations may be important determinants of breast cancer biology, and prognostic markers, the results of this study do not verify an important role for LRIG1 copy number analyses in predicting the risk of relapse in early-stage breast cancer.
  •  
8.
  • Guo, Dongsheng, et al. (författare)
  • Perinuclear leucine-rich repeats and immunoglobulin-like domain proteins (LRIG1-3) as prognostic indicators in astrocytic tumors
  • 2006
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 111:3, s. 238-346
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously characterized three human leucine-rich repeats and immunoglobulin-like domains (LRIG) genes and proteins, named LRIG1-3 and proposed that they may act as suppressors of tumor growth. The LRIG1 transmembrane protein antagonizes the activity of epidermal growth factor receptor family receptor tyrosine kinases. In this study, we evaluated the mRNA expression level of LRIG1-3 in human glioma cell lines and control-matched glioma tissues, characterized the sub-cellular localization of an LRIG3–GFP fusion protein, and analyzed the relationship between sub-cellular localization of LRIG1-3 and clinical parameters in 404 astrocytic tumors by immunohistochemistry. LRIG1-3 mRNA was detected in all human glioma cell lines and matched glioma samples, with large differences in the expression levels. Ectopically expressed LRIG3–GFP localized to perinuclear and cytoplasmic compartments, and to the cell surface of transfected glioma cells. Perinuclear staining of LRIG1-3 was associated with low WHO grade and better survival of the patients. Perinuclear staining of LRIG3 was associated with a lower proliferation index and was in addition to tumor grade, an independent prognostic factor. Furthermore, within the groups of grade III and grade IV tumors, perinuclear staining of LRIG3 significantly correlated with better survival. These results indicate that expression and sub-cellular localization of LRIG1-3 might be of importance in the pathogenesis and prognosis of astrocytic tumors.
  •  
9.
  • Guo, Dongsheng, et al. (författare)
  • The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in ascidiacea
  • 2004
  • Ingår i: Genomics. - : Elsevier BV. - 0888-7543 .- 1089-8646. ; 84:1, s. 157-165
  • Tidskriftsartikel (refereegranskat)abstract
    • Human LRIG1 (formerly LIG1), human LRIG2, and mouse Lrig1 (also known as Lig-1) encode integral membrane proteins. The human genes are located at chromosomes 3p14 and 1p13, which are regions frequently deleted in human cancers. We have searched for additional members of the LRIG family and by molecular cloning identified human LRIG3 and its mouse ortholog Lrig3. Human LRIG3 is located at chromosome 12q13. In silico analysis of public databases revealed a mouse Lrig2 mRNA, three LRIG homologs in the puffer fish Fugu rubripes, and one LRIG homolog in the ascidian tunicate Ciona intestinalis. The human and mouse LRIG polypeptides have the same predicted domain organization: a signal peptide, 15 tandem leucine-rich repeats with cysteine-rich N- and C-flanking domains, three immunoglobulin-like domains, a transmembrane domain, and a cytoplasmic tail. The extracellular part—especially the IgC2.2 domain, the transmembrane domain, and the membrane-proximal part of the cytoplasmic tail—are the most conserved regions. Northern blot analysis and real-time RT-PCR revealed that the three LRIG paralogs are widely expressed in human and mouse tissues. In conclusion, the LRIG gene family was found to have three widely expressed mammalian paralogs, corresponding orthologs in fish, and a homolog in Ascidiacea.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 61
Typ av publikation
tidskriftsartikel (45)
annan publikation (8)
doktorsavhandling (7)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (44)
övrigt vetenskapligt/konstnärligt (17)
Författare/redaktör
Henriksson, Roger (55)
Johansson, Mikael (6)
Golovleva, Irina (5)
Herdenberg, Carl (4)
Grankvist, Kjell (4)
visa fler...
Sjödin, Anna (4)
Ljungberg, Börje (4)
Malmer, Beatrice (4)
Bergh, Anders (3)
Bergenheim, Tommy (3)
Ljuslinder, Ingrid (3)
Micke, Patrick (3)
Stattin, Pär (2)
Hammarsten, Peter (2)
Andersson, Ulrika (2)
Stendahl, Ulf (2)
Josefsson, Andreas (2)
Brännström, Thomas (2)
Hellberg, Dan (2)
Bjermer, Leif (1)
Miller, J. (1)
Casar Borota, Oliver ... (1)
Wang, B. (1)
Bergqvist, Michael (1)
Arner, Peter (1)
Egevad, Lars (1)
Granfors, Torvald (1)
Hesselius, Patrik (1)
Ekman, Simon (1)
Lennartsson, Johan (1)
Jirström, Karin (1)
Franks, Paul W. (1)
Stenling, Roger (1)
Newman, William G. (1)
Dalianis, T (1)
Wang, Na (1)
Hallberg, Bengt (1)
Larsson, Catharina (1)
Johansson, Bengt (1)
Dahlman, Ingrid (1)
Andersson, Sonia (1)
Palmqvist, Richard (1)
Melin, Beatrice S. (1)
Bondy, Melissa L. (1)
Amit, Ido (1)
Yi, W. (1)
Ericsson, Madelene (1)
Hellström, Martin (1)
Tavelin, Björn (1)
visa färre...
Lärosäte
Umeå universitet (61)
Uppsala universitet (7)
Karolinska Institutet (6)
Lunds universitet (3)
Göteborgs universitet (1)
Språk
Engelska (60)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (37)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy