SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heslegrave A) ;pers:(Bocchetta M)"

Sökning: WFRF:(Heslegrave A) > Bocchetta M

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Chelban, V., et al. (författare)
  • Neurofilament light levels predict clinical progression and death in multiple system atrophy
  • 2022
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 145:12
  • Tidskriftsartikel (refereegranskat)abstract
    • In this large multiple system atrophy cohort, Chelban et al. show that plasma NfL correlates with clinical disease severity, progression and prognosis, and could help inform patient stratification and monitor treatment responses in future trials of putative disease-modifying agents. Disease-modifying treatments are currently being trialled in multiple system atrophy. Approaches based solely on clinical measures are challenged by heterogeneity of phenotype and pathogenic complexity. Neurofilament light chain protein has been explored as a reliable biomarker in several neurodegenerative disorders but data on multiple system atrophy have been limited. Therefore, neurofilament light chain is not yet routinely used as an outcome measure in multiple system atrophy. We aimed to comprehensively investigate the role and dynamics of neurofilament light chain in multiple system atrophy combined with cross-sectional and longitudinal clinical and imaging scales and for subject trial selection. In this cohort study, we recruited cross-sectional and longitudinal cases in a multicentre European set-up. Plasma and CSF neurofilament light chain concentrations were measured at baseline from 212 multiple system atrophy cases, annually for a mean period of 2 years in 44 multiple system atrophy patients in conjunction with clinical, neuropsychological and MRI brain assessments. Baseline neurofilament light chain characteristics were compared between groups. Cox regression was used to assess survival; receiver operating characteristic analysis to assess the ability of neurofilament light chain to distinguish between multiple system atrophy patients and healthy controls. Multivariate linear mixed-effects models were used to analyse longitudinal neurofilament light chain changes and correlated with clinical and imaging parameters. Polynomial models were used to determine the differential trajectories of neurofilament light chain in multiple system atrophy. We estimated sample sizes for trials aiming to decrease neurofilament light chain levels. We show that in multiple system atrophy, baseline plasma neurofilament light chain levels were better predictors of clinical progression, survival and degree of brain atrophy than the neurofilament light chain rate of change. Comparative analysis of multiple system atrophy progression over the course of disease, using plasma neurofilament light chain and clinical rating scales, indicated that neurofilament light chain levels rise as the motor symptoms progress, followed by deceleration in advanced stages. Sample size prediction suggested that significantly lower trial participant numbers would be needed to demonstrate treatment effects when incorporating plasma neurofilament light chain values into multiple system atrophy clinical trials in comparison to clinical measures alone. In conclusion, neurofilament light chain correlates with clinical disease severity, progression and prognosis in multiple system atrophy. Combined with clinical and imaging analysis, neurofilament light chain can inform patient stratification and serve as a reliable biomarker of treatment response in future multiple system atrophy trials of putative disease-modifying agents.
  •  
3.
  • Jabbari, E., et al. (författare)
  • Diagnosis across the Spectrum of Progressive Supranuclear Palsy and Corticobasal Syndrome
  • 2020
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149 .- 2168-6157. ; 77:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance Atypical parkinsonian syndromes (APS), including progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and multiple system atrophy (MSA), may be difficult to distinguish in early stages and are often misdiagnosed as Parkinson disease (PD). The diagnostic criteria for PSP have been updated to encompass a range of clinical subtypes but have not been prospectively studied. Objective To define the distinguishing features of PSP and CBS subtypes and to assess their usefulness in facilitating early diagnosis and separation from PD. Design, Setting, Participants This cohort study recruited patients with APS and PD from movement disorder clinics across the United Kingdom from September 1, 2015, through December 1, 2018. Patients with APS were stratified into the following groups: those with Richardson syndrome (PSP-RS), PSP-subcortical (including PSP-parkinsonism and progressive gait freezing subtypes), PSP-cortical (including PSP-frontal and PSP-CBS overlap subtypes), MSA-parkinsonism, MSA-cerebellar, CBS–Alzheimer disease (CBS-AD), and CBS–non-AD. Data were analyzed from February 1, through May 1, 2019. Main Outcomes and Measures Baseline group comparisons used (1) clinical trajectory; (2) cognitive screening scales; (3) serum neurofilament light chain (NF-L) levels; (4) TRIM11, ApoE, and MAPT genotypes; and (5) volumetric magnetic resonance imaging measures. Results A total of 222 patients with APS (101 with PSP, 55 with MSA, 40 with CBS, and 26 indeterminate) were recruited (129 [58.1%] male; mean [SD] age at recruitment, 68.3 [8.7] years). Age-matched control participants (n = 76) and patients with PD (n = 1967) were included for comparison. Concordance between the antemortem clinical and pathologic diagnoses was achieved in 12 of 13 patients with PSP and CBS (92.3%) undergoing postmortem evaluation. Applying the Movement Disorder Society PSP diagnostic criteria almost doubled the number of patients diagnosed with PSP from 58 to 101. Forty-nine of 101 patients with reclassified PSP (48.5%) did not have the classic PSP-RS subtype. Patients in the PSP-subcortical group had a longer diagnostic latency and a more benign clinical trajectory than those in PSP-RS and PSP-cortical groups. The PSP-subcortical group was distinguished from PSP-cortical and PSP-RS groups by cortical volumetric magnetic resonance imaging measures (area under the curve [AUC], 0.84-0.89), cognitive profile (AUC, 0.80-0.83), serum NF-L level (AUC, 0.75-0.83), and TRIM11 rs564309 genotype. Midbrain atrophy was a common feature of all PSP groups. Eight of 17 patients with CBS (47.1%) undergoing cerebrospinal fluid analysis were identified as having the CBS-AD subtype. Patients in the CBS-AD group had a longer diagnostic latency, relatively benign clinical trajectory, greater cognitive impairment, and higher APOE-ε4 allele frequency than those in the CBS–non-AD group (AUC, 0.80-0.87; P < .05). Serum NF-L levels distinguished PD from all PSP and CBS cases combined (AUC, 0.80; P < .05). Conclusions and Relevance These findings suggest that studies focusing on the PSP-RS subtype are likely to miss a large number of patients with underlying PSP tau pathology. Analysis of cerebrospinal fluid defined a distinct CBS-AD subtype. The PSP and CBS subtypes have distinct characteristics that may enhance their early diagnosis.
  •  
4.
  • Street, D., et al. (författare)
  • Progression of atypical parkinsonian syndromes: PROSPECT-M-UK study implications for clinical trials
  • 2023
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 146:8, s. 3232-3242
  • Tidskriftsartikel (refereegranskat)abstract
    • Street et al. compare candidate clinical trial end points in progressive supranuclear palsy, multiple system atrophy, corticobasal syndrome and related disorders. Neuroimaging metrics generally enable lower sample sizes than cognitive and functional measures, although optimal outcome measures vary by disease and subtype. The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based end point selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), multiple system atrophy (MSA) and related disorders, to compare candidate clinical trial end points. In this multicentre UK study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and MRI assessments at baseline, 6 and 12 months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, PSP-subcortical (PSP-parkinsonism and progressive gait freezing subtypes), PSP-cortical (PSP-frontal, PSP-speech and language and PSP-CBS subtypes), MSA-parkinsonism, MSA-cerebellar, CBS with and without evidence of Alzheimer's disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling and sample sizes for clinical trials of disease-modifying agents, according to group and assessment type. Two hundred forty-three people were recruited [117 PSP, 68 CBS, 42 MSA and 16 indeterminate; 138 (56.8%) male; age at recruitment 68.7 +/- 8.61 years]. One hundred and fifty-nine completed the 6-month assessment (82 PSP, 27 CBS, 40 MSA and 10 indeterminate) and 153 completed the 12-month assessment (80 PSP, 29 CBS, 35 MSA and nine indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N < 100 required for 1-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease-specific. In conclusion, phenotypic variance within PSP, CBS and MSA is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial end points, from potential functional, cognitive, clinical or neuroimaging measures of disease progression.
  •  
5.
  • Heller, C, et al. (författare)
  • Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia
  • 2020
  • Ingår i: Journal of neurology, neurosurgery, and psychiatry. - : BMJ. - 1468-330X .- 0022-3050. ; 91:3, s. 263-270
  • Tidskriftsartikel (refereegranskat)abstract
    • There are few validated fluid biomarkers in frontotemporal dementia (FTD). Glial fibrillary acidic protein (GFAP) is a measure of astrogliosis, a known pathological process of FTD, but has yet to be explored as potential biomarker.MethodsPlasma GFAP and neurofilament light chain (NfL) concentration were measured in 469 individuals enrolled in the Genetic FTD Initiative: 114 C9orf72 expansion carriers (74 presymptomatic, 40 symptomatic), 119 GRN mutation carriers (88 presymptomatic, 31 symptomatic), 53 MAPT mutation carriers (34 presymptomatic, 19 symptomatic) and 183 non-carrier controls. Biomarker measures were compared between groups using linear regression models adjusted for age and sex with family membership included as random effect. Participants underwent standardised clinical assessments including the Mini-Mental State Examination (MMSE), Frontotemporal Lobar Degeneration-Clinical Dementia Rating scale and MRI. Spearman’s correlation coefficient was used to investigate the relationship of plasma GFAP to clinical and imaging measures.ResultsPlasma GFAP concentration was significantly increased in symptomatic GRN mutation carriers (adjusted mean difference from controls 192.3 pg/mL, 95% CI 126.5 to 445.6), but not in those with C9orf72 expansions (9.0, –61.3 to 54.6), MAPT mutations (12.7, –33.3 to 90.4) or the presymptomatic groups. GFAP concentration was significantly positively correlated with age in both controls and the majority of the disease groups, as well as with NfL concentration. In the presymptomatic period, higher GFAP concentrations were correlated with a lower cognitive score (MMSE) and lower brain volume, while in the symptomatic period, higher concentrations were associated with faster rates of atrophy in the temporal lobe.ConclusionsRaised GFAP concentrations appear to be unique to GRN-related FTD, with levels potentially increasing just prior to symptom onset, suggesting that GFAP may be an important marker of proximity to onset, and helpful for forthcoming therapeutic prevention trials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy