SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Heslegrave A) ;pers:(Schott J. M.)"

Search: WFRF:(Heslegrave A) > Schott J. M.

  • Result 1-10 of 19
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Benjamin, L. A., et al. (author)
  • Antiphospholipid antibodies and neurological manifestations in acute COVID-19: A single-centre cross-sectional study
  • 2021
  • In: Eclinicalmedicine. - : Elsevier BV. - 2589-5370. ; 39
  • Journal article (peer-reviewed)abstract
    • Background: A high prevalence of antiphospholipid antibodies has been reported in case series of patients with neurological manifestations and COVID-19; however, the pathogenicity of antiphospholipid antibodies in COVID-19 neurology remains unclear. Methods: This single-centre cross-sectional study included 106 adult patients: 30 hospitalised COVID-neurological cases, 47 non-neurological COVID-hospitalised controls, and 29 COVID-non-hospitalised controls, recruited between March and July 2020. We evaluated nine antiphospholipid antibodies: anticardiolipin antibodies [aCL] IgA, IgM, IgG; anti-beta-2 glycoprotein-1 [a beta(2)GPI] IgA, IgM, IgG; anti-phosphatidylserine/prothrombin [aPS/PT] IgM, IgG; and anti-domain I b2GPI (aD1 beta 2GPI) IgG. Findings: There was a high prevalence of antiphospholipid antibodies in the COVID-neurological (73.3%) and non-neurological COVID-hospitalised controls (76.6%) in contrast to the COVID-non-hospitalised controls (48.2%). aPS/PT IgG titres were significantly higher in the COVID-neurological group compared to both control groups (p < 0.001). Moderate-high titre of aPS/PT IgG was found in 2 out of 3 (67%) patients with acute disseminated encephalomyelitis [ADEM]. aPS/PT IgG titres negatively correlated with oxygen requirement (FiO(2) R=-0.15 p = 0.040) and was associated with venous thromboembolism (p = 0.043). In contrast, aCL IgA (p < 0.001) and IgG (p < 0.001) was associated with non-neurological COVID-hospitalised controls compared to the other groups and correlated positively with D-dimer and creatinine but negatively with FiO(2). Interpretation: Our findings show that aPS/PT IgG is associated with COVID-19-associated ADEM. In contrast, aCL IgA and IgG are seen much more frequently in non-neurological hospitalised patients with COVID-19. Characterisation of antiphospholipid antibody persistence and potential longitudinal clinical impact are required to guide appropriate management. (C) 2021 The Author(s). Published by Elsevier Ltd.
  •  
2.
  • Mok, T. H., et al. (author)
  • Seed amplification and neurodegeneration marker trajectories in individuals at risk of prion disease
  • 2023
  • In: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 146:6
  • Journal article (peer-reviewed)abstract
    • Human prion diseases are remarkable for long incubation times followed typically by rapid clinical decline. Seed amplification assays and neurodegeneration biofluid biomarkers are remarkably useful in the clinical phase, but their potential to predict clinical onset in healthy people remains unclear. This is relevant not only to the design of preventive strategies in those at-risk of prion diseases, but more broadly, because prion-like mechanisms are thought to underpin many neurodegenerative disorders. Here, we report the accrual of a longitudinal biofluid resource in patients, controls and healthy people at risk of prion diseases, to which ultrasensitive techniques such as real-time quaking-induced conversion (RT-QuIC) and single molecule array (Simoa) digital immunoassays were applied for preclinical biomarker discovery. We studied 648 CSF and plasma samples, including 16 people who had samples taken when healthy but later developed inherited prion disease (IPD) ('converters'; range from 9.9 prior to, and 7.4 years after onset). Symptomatic IPD CSF samples were screened by RT-QuIC assay variations, before testing the entire collection of at-risk samples using the most sensitive assay. Glial fibrillary acidic protein (GFAP), neurofilament light (NfL), tau and UCH-L1 levels were measured in plasma and CSF. Second generation (IQ-CSF) RT-QuIC proved 100% sensitive and specific for sporadic Creutzfeldt-Jakob disease (CJD), iatrogenic and familial CJD phenotypes, and subsequently detected seeding activity in four presymptomatic CSF samples from three E200K carriers; one converted in under 2 months while two remain asymptomatic after at least 3 years' follow-up. A bespoke HuPrP P102L RT-QuIC showed partial sensitivity for P102L disease. No compatible RT-QuIC assay was discovered for classical 6-OPRI, A117V and D178N, and these at-risk samples tested negative with bank vole RT-QuIC. Plasma GFAP and NfL, and CSF NfL levels emerged as proximity markers of neurodegeneration in the typically slow IPDs (e.g. P102L), with significant differences in mean values segregating healthy control from IPD carriers (within 2 years to onset) and symptomatic IPD cohorts; plasma GFAP appears to change before NfL, and before clinical conversion. In conclusion, we show distinct biomarker trajectories in fast and slow IPDs. Specifically, we identify several years of presymptomatic seeding positivity in E200K, a new proximity marker (plasma GFAP) and sequential neurodegenerative marker evolution (plasma GFAP followed by NfL) in slow IPDs. We suggest a new preclinical staging system featuring clinical, seeding and neurodegeneration aspects, for validation with larger prion at-risk cohorts, and with potential application to other neurodegenerative proteopathies.
  •  
3.
  • Graham, N., et al. (author)
  • Alzheimer's disease marker phospho-tau181 is not elevated in the first year after moderate-to-severe TBI
  • 2024
  • In: Journal of Neurology Neurosurgery and Psychiatry. - 0022-3050. ; 95:4, s. 356-359
  • Journal article (peer-reviewed)abstract
    • BackgroundTraumatic brain injury (TBI) is associated with the tauopathies Alzheimer's disease and chronic traumatic encephalopathy. Advanced immunoassays show significant elevations in plasma total tau (t-tau) early post-TBI, but concentrations subsequently normalise rapidly. Tau phosphorylated at serine-181 (p-tau181) is a well-validated Alzheimer's disease marker that could potentially seed progressive neurodegeneration. We tested whether post-traumatic p-tau181 concentrations are elevated and relate to progressive brain atrophy.MethodsPlasma p-tau181 and other post-traumatic biomarkers, including total-tau (t-tau), neurofilament light (NfL), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP), were assessed after moderate-to-severe TBI in the BIO-AX-TBI cohort (first sample mean 2.7 days, second sample within 10 days, then 6 weeks, 6 months and 12 months, n=42). Brain atrophy rates were assessed in aligned serial MRI (n=40). Concentrations were compared patients with and without Alzheimer's disease, with healthy controls.ResultsPlasma p-tau181 concentrations were significantly raised in patients with Alzheimer's disease but not after TBI, where concentrations were non-elevated, and remained stable over one year. P-tau181 after TBI was not predictive of brain atrophy rates in either grey or white matter. In contrast, substantial trauma-associated elevations in t-tau, NfL, GFAP and UCH-L1 were seen, with concentrations of NfL and t-tau predictive of brain atrophy rates.ConclusionsPlasma p-tau181 is not significantly elevated during the first year after moderate-to-severe TBI and levels do not relate to neuroimaging measures of neurodegeneration.
  •  
4.
  • Keshavan, A., et al. (author)
  • Concordance of csf measures of alzheimer’s pathology with amyloid pet status in a preclinical cohort: A comparison of lumipulse and established immunoassays
  • 2021
  • In: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. - : Wiley. - 2352-8729. ; 13:1
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: We assessed the concordance of cerebrospinal fluid (CSF) amyloid beta (Aβ) and tau measured on the fully automated Lumipulse platform with presymptomatic Alzheimer’s disease (AD) pathology on amyloid positron emission tomography (PET). METHODS: In 72 individuals from the Insight 46 study, CSF Aβ40, Aβ42, total tau (t-tau), and phosphorylated tau at site 181 (p-tau181) were measured using Lumipulse, INNOTEST, and Meso Scale Discovery (MSD) assays and inter-platform Pearson correlations derived. Lumipulse Aβ42 measures were adjusted to incorporate standardization to certified reference materials. Logistic regressions and receiver operating characteristics analysis generated CSF cut-points optimizing concordance with18F florbetapir amyloid PET status (n = 63). RESULTS: Measurements of CSF Aβ, p-tau181, and their ratios correlated well across platforms (r 0.84 to 0.94, P < .0001); those of t-tau and t-tau/Aβ42 correlated moderately (r 0.57 to 0.79, P < .0001). The best concordance with amyloid PET (100% sensitivity and 94% specificity) was afforded by cut-points of 0.075 for Lumipulse Aβ42/Aβ40, 0.087 for MSD Aβ42/Aβ40 and 17.3 for Lumipulse Aβ42/p-tau181. DISCUSSION: The Lumipulse platform provides comparable sensitivity and specificity to established CSF immunoassays in identifying pre-symptomatic AD pathology. © 2020 The Authors.
  •  
5.
  • Paterson, R. W., et al. (author)
  • Do cerebrospinal fluid transfer methods affect measured amyloid β42, total tau, and phosphorylated tau in clinical practice?
  • 2015
  • In: Alzheimer's & Dementia. - : Elsevier Inc.. - 1552-5260 .- 1552-5279. ; 1:3, s. 380-384
  • Journal article (peer-reviewed)abstract
    • Introduction: Cerebrospinal fluid (CSF) neurodegenerative markers are measured clinically to support a diagnosis of Alzheimer's disease. Several preanalytical factors may alter the CSF concentrations of amyloid β 1-42 (Aβ1-42) in particular with the potential to influence diagnosis. We aimed to determine whether routine handling of samples alters measured biomarker concentration compared with that of prompt delivery to the laboratory. Methods: Forty individuals with suspected neurodegenerative diseases underwent diagnostic lumbar punctures using a standardized technique. A sample of each patient's CSF was sent to the laboratory by four different delivery methods: (1) by courier at room temperature; (2) by courier, on ice; (3) using standard hospital portering; and (4) after quarantining for >24 hours. Aβ1-42, total tau (t-tau), and phosphorylated tau (p-tau) levels measured using standard enzyme-linked immunosorbent assay techniques were compared between transfer methods. Results: There were no significant differences in Aβ1-42, t-tau, or p-tau concentrations measured in samples transported via the different delivery methods despite significant differences in time taken to deliver samples. Discussion: When CSF is collected in appropriate tubes, transferred at room temperature, and processed within 24 hours, neurodegenerative markers can be reliably determined. © 2015 The Authors.
  •  
6.
  • Ziff, O. J., et al. (author)
  • Amyloid processing in COVID-19-associated neurological syndromes
  • 2022
  • In: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 161:2, s. 146-157
  • Journal article (peer-reviewed)abstract
    • SARS-CoV-2 infection can damage the nervous system with multiple neurological manifestations described. However, there is limited understanding of the mechanisms underlying COVID-19 neurological injury. This is a cross-sectional exploratory prospective biomarker cohort study of 21 patients with COVID-19 neurological syndromes (Guillain–Barre Syndrome [GBS], encephalitis, encephalopathy, acute disseminated encephalomyelitis [ADEM], intracranial hypertension, and central pain syndrome) and 23 healthy COVID-19 negative controls. We measured cerebrospinal fluid (CSF) and serum biomarkers of amyloid processing, neuronal injury (neurofilament light), astrocyte activation (GFAp), and neuroinflammation (tissue necrosis factor [TNF] ɑ, interleukin [IL]-6, IL-1β, IL-8). Patients with COVID-19 neurological syndromes had significantly reduced CSF soluble amyloid precursor protein (sAPP)-ɑ (p=0.004) and sAPPβ (p=0.03) as well as amyloid β (Aβ) 40 (p=5.2×10−8), Aβ42 (p=3.5×10−7), and Aβ42/Aβ40 ratio (p=0.005) compared to controls. Patients with COVID-19 neurological syndromes showed significantly increased neurofilament light (NfL, p=0.001) and this negatively correlated with sAPPɑ and sAPPβ. Conversely, GFAp was significantly reduced in COVID-19 neurological syndromes (p=0.0001) and this positively correlated with sAPPɑ and sAPPβ. COVID-19 neurological patients also displayed significantly increased CSF proinflammatory cytokines and these negatively correlated with sAPPɑ and sAPPβ. A sensitivity analysis of COVID-19-associated GBS revealed a non-significant trend toward greater impairment of amyloid processing in COVID-19 central than peripheral neurological syndromes. This pilot study raises the possibility that patients with COVID-19-associated neurological syndromes exhibit impaired amyloid processing. Altered amyloid processing was linked to neuronal injury and neuroinflammation but reduced astrocyte activation. (Figure presented.) © 2022 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
  •  
7.
  • Banerjee, G., et al. (author)
  • Cerebrospinal fluid metallomics in cerebral amyloid angiopathy: an exploratory analysis
  • 2022
  • In: Journal of Neurology. - : Springer Science and Business Media LLC. - 0340-5354 .- 1432-1459. ; 269:3, s. 1470-75
  • Journal article (peer-reviewed)abstract
    • Introduction Cerebral amyloid angiopathy (CAA) is associated with symptomatic intracerebral haemorrhage. Biomarkers of clinically silent bleeding events, such as cerebrospinal fluid (CSF) ferritin and iron, might provide novel measures of disease presence and severity. Methods We performed an exploratory study comparing CSF iron, ferritin, and other metal levels in patients with CAA, control subjects (CS) and patients with Alzheimer's disease (AD). Ferritin was measured using a latex fixation test; metal analyses were performed using inductively coupled plasma mass spectrometry. Results CAA patients (n = 10) had higher levels of CSF iron than the AD (n = 20) and CS (n = 10) groups (medians 23.42, 15.48 and 17.71 mu g/L, respectively, p = 0.0015); the difference between CAA and AD groups was significant in unadjusted and age-adjusted analyses. We observed a difference in CSF ferritin (medians 10.10, 7.77 and 8.01 ng/ml, for CAA, AD and CS groups, respectively, p = 0.01); the difference between the CAA and AD groups was significant in unadjusted, but not age-adjusted, analyses. We also observed differences between the CAA and AD groups in CSF nickel and cobalt (unadjusted analyses). Conclusions In this exploratory study, we provide preliminary evidence for a distinct CSF metallomic profile in patients with CAA. Replication and validation of these results in larger cohorts is needed.
  •  
8.
  • Foiani, M. S., et al. (author)
  • Searching for novel cerebrospinal fluid biomarkers of tau pathology in frontotemporal dementia: An elusive quest
  • 2019
  • In: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ. - 0022-3050 .- 1468-330X. ; 90:7, s. 740-746
  • Journal article (peer-reviewed)abstract
    • Background: Frontotemporal dementia (FTD) is a pathologically heterogeneous neurodegenerative disorder associated usually with tau or TDP-43 pathology, although some phenotypes such as logopenic variant primary progressive aphasia are more commonly associated with Alzheimer's disease pathology. Currently, there are no biomarkers able to diagnose the underlying pathology during life. In this study, we aimed to investigate the potential of novel tau species within cerebrospinal fluid (CSF) as biomarkers for tau pathology in FTD. Methods: 86 participants were included: 66 with a clinical diagnosis within the FTD spectrum and 20 healthy controls. Immunoassays targeting tau fragments N-123, N-mid-region, N-224 and X-368, as well as a non-phosphorylated form of tau were measured in CSF, along with total-tau (T-tau) and phospho-tau (P-tau (181) ). Patients with FTD were grouped based on their Aβ 42 level into those likely to have underlying Alzheimer's disease (AD) pathology (n=21) and those with likely frontotemporal lobar degeneration (FTLD) pathology (n=45). The FTLD group was then subgrouped based on their underlying clinical and genetic diagnoses into those with likely tau (n=7) or TDP-43 (n=18) pathology. Results: Significantly higher concentrations of tau N-mid-region, tau N-224 and non-phosphorylated tau were seen in both the AD group and FTLD group compared with controls. However, none of the novel tau species showed a significant difference between the AD and FTLD groups, nor between the TDP-43 and tau pathology groups. In a subanalysis, normalising for total-tau, none of the novel tau species provided a higher sensitivity and specificity to distinguish between tau and TDP-43 pathology than P-tau (181) /T-tau, which itself only had a sensitivity of 61.1% and specificity of 85.7% with a cut-off of <0.109. Conclusions: Despite investigating multiple novel CSF tau fragments, none show promise as an FTD biomarker and so the quest for in vivo markers of FTLD-tau pathology continues. © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. Published by BMJ.
  •  
9.
  • Keshavan, A., et al. (author)
  • Blood Biomarkers for Alzheimer's Disease: Much Promise, Cautious Progress
  • 2017
  • In: Molecular Diagnosis & Therapy. - : Springer Science and Business Media LLC. - 1177-1062 .- 1179-2000. ; 21:1, s. 13-22
  • Journal article (peer-reviewed)abstract
    • Biomarkers in Alzheimer's disease (AD) have the potential to allow early and more accurate diagnosis, predict disease progression, stratify individuals and track response to candidate therapies in drug trials. The first fluid biomarkers reflecting aspects of AD neuropathology were identified in cerebrospinal fluid (CSF) in the 1990s. Three CSF biomarkers (amyloid-beta 1-42, total tau and phospho-tau) have consistently been shown to have diagnostic utility and are incorporated into the new diagnostic criteria for AD. These markers have also been shown in longitudinal studies to predict conversion of mild cognitive impairment to AD. However, a key issue with the use of CSF biomarkers as a screening test is the invasiveness of lumbar puncture. Over the last 20 years there has been an active quest for blood biomarkers, which could be easily acquired and tested repeatedly throughout the disease course. One approach to identifying such markers is to attempt to measure candidates that have already been identified in CSF. Until recently, this approach has been limited by assay sensitivity, but newer platforms now allow single molecule-level detection. Another approach is identification of candidates in large multiplex panels that allow for multiple analytes to be quantified in parallel. While both approaches show promise, to date no blood-based biomarker or combination of biomarkers has sufficient predictive value to have utility in clinical practice. In this review, an overview of promising blood protein candidates is provided, and the challenges of validating and converting these into practicable tests are discussed.
  •  
10.
  • Keshavan, A., et al. (author)
  • Stability of blood-based biomarkers of Alzheimer's disease over multiple freeze-thaw cycles
  • 2018
  • In: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. - : Wiley. - 2352-8729. ; 10, s. 448-451
  • Journal article (peer-reviewed)abstract
    • Introduction Freeze-thaw instability may contribute to preanalytical variation in blood-based biomarker studies. We investigated the effects of up to four freeze-thaw cycles on single molecule array immunoassays of serum neurofilament light chain and plasma total tau, amyloid β 1–40 (Aß40), and Aβ 1–42 (Aβ42). Methods Individuals who had peripheral venepuncture during investigation of suspected neurodegenerative disease were recruited. After standardized preprocessing, 200 μL of plasma and serum aliquots were stored at −80°C within 60 minutes. Aliquots underwent one to four freeze-thaw cycles. Results There was no significant difference across four freeze-thaw cycles for serum neurofilament light chain (n = 12), plasma total tau (n = 11), or plasma Aβ42 (n = 12). For plasma Aβ40 (n = 14), there were significant median reductions by ratios of .96 and .92 at the third and fourth cycles, respectively. Discussion Up to four freeze-thaw cycles do not influence single molecule array blood biomarkers of neurofilament light chain, total tau, or Aβ42, with at most minor reductions in Aβ40.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view