SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heywood Wendy E) "

Sökning: WFRF:(Heywood Wendy E)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Heywood, Wendy E, et al. (författare)
  • A High Throughput, Multiplexed and Targeted Proteomic CSF Assay to Quantify Neurodegenerative Biomarkers and Apolipoprotein E Isoforms Status.
  • 2016
  • Ingår i: Journal of visualized experiments : JoVE. - 1940-087X. ; :116
  • Tidskriftsartikel (refereegranskat)abstract
    • Many neurodegenerative diseases are still lacking effective treatments. Reliable biomarkers for identifying and classifying these diseases will be important in the development of future novel therapies. Often potential new biomarkers do not make it into the clinic due to limitations in their development and high costs. However, targeted proteomics using Multiple Reaction Monitoring Liquid Chromatography-tandem/Mass Spectrometry (MRM LC-MS/MS), specifically using triple quadrupole mass spectrometers, is one method that can be used to rapidly evaluate and validate biomarkers for clinical translation into diagnostic laboratories. Traditionally, this platform has been used extensively for measurement of small molecules in clinical laboratories, but it is the potential to analyze proteins, that makes it an attractive alternative to ELISA (Enzyme-Linked Immunosorbent Assay)-based methods. We describe here how targeted proteomics can be used to measure multiplexed markers of dementia, including the detection and quantitation of the known risk factor apolipoprotein E isoform 4 (ApoE4). In order to make the assay suitable for translation, it is designed to be rapid, simple, highly specific and cost effective. To achieve this, every step in the development of the assay must be optimized for the individual proteins and tissues they are analyzed in. This method describes a typical workflow including various tips and tricks to developing a targeted proteomics MRM LC-MS/MS for translation. The method development is optimized using custom synthesized versions of tryptic quantotypic peptides, which calibrate the MS for detection and then spiked into CSF to determine correct identification of the endogenous peptide in the chromatographic separation prior to analysis in the MS. To achieve absolute quantitation, stable isotope-labeled internal standard versions of the peptides with short amino acid sequence tags and containing a trypsin cleavage site, are included in the assay.
  •  
2.
  •  
3.
  • Heywood, Wendy E., et al. (författare)
  • Proteomic Discovery and Development of a Multiplexed Targeted MRM-LC-MS/MS Assay for Urine Biomarkers of Extracellular Matrix Disruption in Mucopolysaccharidoses I, II, and VI
  • Ingår i: Analytical Chemistry. - : The American Chemical Society (ACS). - 0003-2700. ; 87:24, s. 12238-12244
  • Tidskriftsartikel (refereegranskat)abstract
    • The mucopolysaccharidoses (MPS) are lysosomal storage disorders that result from defects in the catabolism of glycosaminoglycans. Impaired muscle, bone, and connective tissue are typical clinical features of MPS due to disruption of the extracellular matrix. Markers of MPS disease pathology are needed to determine disease severity and monitor effects of existing and emerging new treatments on disease mechanisms. Urine samples from a small cohort of MPS-I, -II, and -VI patients (n = 12) were analyzed using label-free quantative proteomics. Fifty-three proteins including many associated with extracellular matrix organization were differently expressed. A targeted multiplexed peptide MRM LC-MS/MS assay was used on a larger validation cohort of patient samples (MPS-I n = 18, MPS-II n = 12, MPS-VI n = 6, control n = 20). MPS-I and -II groups were further subdivided according to disease severity. None of the markers assessed were altered significantly in the mild disease groups compared to controls. β-galactosidase, a lysosomal protein, was elevated 3.6-5.7-fold significantly (p < 0.05) in all disease groups apart from mild MPS-I and -II. Collagen type Iα, fatty-acid-binding-protein 5, nidogen-1, cartilage oligomeric matrix protein, and insulin-like growth factor binding protein 7 concentrations were elevated in severe MPS I and II groups. Cartilage oligomeric matrix protein, insulin-like growth factor binding protein 7, and β-galactosidase were able to distinguish the severe neurological form of MPS-II from the milder non-neurological form. Protein Heg1 was significantly raised only in MPS-VI. This work describes the discovery of new biomarkers of MPS that represent disease pathology and allows the stratification of MPS-II patients according to disease severity.
  •  
4.
  • Mullin, Stephen, et al. (författare)
  • Ambroxol for the Treatment of Patients With Parkinson Disease With and Without Glucocerebrosidase Gene Mutations: A Nonrandomized, Noncontrolled Trial.
  • 2020
  • Ingår i: JAMA neurology. - 2168-6157. ; 77:4, s. 427-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations of the glucocerebrosidase gene, GBA1 (OMIM 606463), are the most important risk factor for Parkinson disease (PD). In vitro and in vivo studies have reported that ambroxol increases β-glucocerebrosidase (GCase) enzyme activity and reduces α-synuclein levels. These observations support a potential role for ambroxol therapy in modifying a relevant pathogenetic pathway in PD.To assess safety, tolerability, cerebrospinal fluid (CSF) penetration, and target engagement of ambroxol therapy with GCase in patients with PD with and without GBA1 mutations.An escalating dose of oral ambroxol to 1.26 g per day.This single-center open-label noncontrolled clinical trial was conducted between January 11, 2017, and April 25, 2018, at the Leonard Wolfson Experimental Neuroscience Centre, a dedicated clinical research facility and part of the University College London Queen Square Institute of Neurology in London, United Kingdom. Participants were recruited from established databases at the Royal Free London Hospital and National Hospital for Neurology and Neurosurgery in London. Twenty-four patients with moderate PD were evaluated for eligibility, and 23 entered the study. Of those, 18 patients completed the study; 1 patient was excluded (failed lumbar puncture), and 4 patients withdrew (predominantly lumbar puncture-related complications). All data analyses were performed from November 1 to December 14, 2018.Primary outcomes at 186 days were the detection of ambroxol in the CSF and a change in CSF GCase activity.Of the 18 participants (15 men [83.3%]; mean [SD] age, 60.2 [9.7] years) who completed the study, 17 (8 with GBA1 mutations and 9 without GBA1 mutations) were included in the primary analysis. Between days 0 and 186, a 156-ng/mL increase in the level of ambroxol in CSF (lower 95% confidence limit, 129 ng/mL; P < .001) was observed. The CSF GCase activity decreased by 19% (0.059 nmol/mL per hour; 95% CI, -0.115 to -0.002; P = .04). The ambroxol therapy was well tolerated, with no serious adverse events. An increase of 50 pg/mL (13%) in the CSF α-synuclein concentration (95% CI, 14-87; P = .01) and an increase of 88 ng/mol (35%) in the CSF GCase protein levels (95% CI, 40-137; P = .002) were observed. Mean (SD) scores on part 3 of the Movement Disorders Society Unified Parkinson Disease Rating Scale decreased (ie, improved) by 6.8 (7.1) points (95% CI, -10.4 to -3.1; P = .001). These changes were observed in patients with and without GBA1 mutations.The study results suggest that ambroxol therapy was safe and well tolerated; CSF penetration and target engagement of ambroxol were achieved, and CSF α-synuclein levels were increased. Placebo-controlled clinical trials are needed to examine whether ambroxol therapy is associated with changes in the natural progression of PD.ClinicalTrials.gov identifier: NCT02941822; EudraCT identifier: 2015-002571-24.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy