SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hidvégi Attila) "

Sökning: WFRF:(Hidvégi Attila)

  • Resultat 1-10 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Aad, G., et al. (författare)
  • 2011
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Aad, G., et al. (författare)
  • The ATLAS Experiment at the CERN Large Hadron Collider
  • 2008
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 3:S08003
  • Forskningsöversikt (refereegranskat)abstract
    • The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.
  •  
5.
  • Abata, E., et al. (författare)
  • Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 to 350 GeV
  • 2010
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier. - 0168-9002 .- 1872-9576 .- 0167-5087. ; 621:1-3, s. 134-150
  • Tidskriftsartikel (refereegranskat)abstract
    • A fully instrumented slice of the ATLAS detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the results of the measurements of the response of the barrel calorimeter to hadrons with energies in the range 20-350 GeV and beam impact points and angles corresponding to pseudo-rapidity values in the range 0.2-0.65 are reported. The results are compared to the predictions of a simulation program using the Geant 4 toolkit. (C) 2010 Published by Elsevier B.V.
  •  
6.
  • Abbasi, R., et al. (författare)
  • A Search for Coincident Neutrino Emission from Fast Radio Bursts with Seven Years of IceCube Cascade Events
  • 2023
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 1538-4357 .- 0004-637X. ; 946:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the results of a search for neutrinos that are spatially and temporally coincident with 22 unique, nonrepeating fast radio bursts (FRBs) and one repeating FRB (FRB 121102). FRBs are a rapidly growing class of Galactic and extragalactic astrophysical objects that are considered a potential source of high-energy neutrinos. The IceCube Neutrino Observatory's previous FRB analyses have solely used track events. This search utilizes seven years of IceCube cascade events which are statistically independent of track events. This event selection allows probing of a longer range of extended timescales due to the low background rate. No statistically significant clustering of neutrinos was observed. Upper limits are set on the time-integrated neutrino flux emitted by FRBs for a range of extended time windows.
  •  
7.
  • Abbasi, R., et al. (författare)
  • A Search for IceCube Sub-TeV Neutrinos Correlated with Gravitational-wave Events Detected By LIGO/Virgo
  • 2023
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 1538-4357 .- 0004-637X. ; 959:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The LIGO/Virgo collaboration published the catalogs GWTC-1, GWTC-2.1, and GWTC-3 containing candidate gravitational-wave (GW) events detected during its runs O1, O2, and O3. These GW events can be possible sites of neutrino emission. In this paper, we present a search for neutrino counterparts of 90 GW candidates using IceCube DeepCore, the low-energy infill array of the IceCube Neutrino Observatory. The search is conducted using an unbinned maximum likelihood method, within a time window of 1000 s, and uses the spatial and timing information from the GW events. The neutrinos used for the search have energies ranging from a few GeV to several tens of TeV. We do not find any significant emission of neutrinos, and place upper limits on the flux and the isotropic-equivalent energy emitted in low-energy neutrinos. We also conduct a binomial test to search for source populations potentially contributing to neutrino emission. We report a nondetection of a significant neutrino-source population with this test.
  •  
8.
  • Abbasi, R., et al. (författare)
  • Constraining High-energy Neutrino Emission from Supernovae with IceCube
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 949:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Core-collapse supernovae are a promising potential high-energy neutrino source class. We test for correlation between seven years of IceCube neutrino data and a catalog containing more than 1000 core-collapse supernovae of types IIn and IIP and a sample of stripped-envelope supernovae. We search both for neutrino emission from individual supernovae as well as for combined emission from the whole supernova sample, through a stacking analysis. No significant spatial or temporal correlation of neutrinos with the cataloged supernovae was found. All scenarios were tested against the background expectation and together yield an overall p-value of 93%; therefore, they show consistency with the background only. The derived upper limits on the total energy emitted in neutrinos are 1.7 x 10(48) erg for stripped-envelope supernovae, 2.8 x 10(48) erg for type IIP, and 1.3 x 10(49) erg for type IIn SNe, the latter disfavoring models with optimistic assumptions for neutrino production in interacting supernovae. We conclude that stripped-envelope supernovae and supernovae of type IIn do not contribute more than 14.6% and 33.9%, respectively, to the diffuse neutrino flux in the energy range of about [ 10(3)-10(5)] GeV, assuming that the neutrino energy spectrum follows a power-law with an index of -2.5. Under the same assumption, we can only constrain the contribution of type IIP SNe to no more than 59.9%. Thus, core-collapse supernovae of types IIn and stripped-envelope supernovae can both be ruled out as the dominant source of the diffuse neutrino flux under the given assumptions.
  •  
9.
  • Abbasi, R., et al. (författare)
  • Constraints on Populations of Neutrino Sources from Searches in the Directions of IceCube Neutrino Alerts
  • 2023
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 951:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Beginning in 2016, the IceCube Neutrino Observatory has sent out alerts in real time containing the information of high-energy (E & GSIM; 100 TeV) neutrino candidate events with moderate to high (& GSIM;30%) probability of astrophysical origin. In this work, we use a recent catalog of such alert events, which, in addition to events announced in real time, includes events that were identified retroactively and covers the time period of 2011-2020. We also search for additional, lower-energy neutrinos from the arrival directions of these IceCube alerts. We show how performing such an analysis can constrain the contribution of rare populations of cosmic neutrino sources to the diffuse astrophysical neutrino flux. After searching for neutrino emission coincident with these alert events on various timescales, we find no significant evidence of either minute-scale or day-scale transient neutrino emission or of steady neutrino emission in the direction of these alert events. This study also shows how numerous a population of neutrino sources has to be to account for the complete astrophysical neutrino flux. Assuming that sources have the same luminosity, an E (-2.5) neutrino spectrum, and number densities that follow star formation rates, the population of sources has to be more numerous than 7 x 10(-9) Mpc(-3). This number changes to 3 x 10(-7) Mpc(-3) if number densities instead have no cosmic evolution.
  •  
10.
  • Abbasi, R., et al. (författare)
  • D-Egg : a dual PMT optical module for IceCube
  • 2023
  • Ingår i: Journal of Instrumentation. - : Institute of Physics Publishing (IOPP). - 1748-0221. ; 18:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The D-Egg, an acronym for "Dual optical sensors in an Ellipsoid Glass for Gen2," is one of the optical modules designed for future extensions of the IceCube experiment at the South Pole. The D-Egg has an elongated-sphere shape to maximize the photon-sensitive effective area while maintaining a narrow diameter to reduce the cost and the time needed for drilling of the deployment holes in the glacial ice for the optical modules at depths up to 2700 m. The D-Egg design is utilized for the IceCube Upgrade, the next stage of the IceCube project also known as IceCube-Gen2 Phase 1, where nearly half of the optical sensors to be deployed are D-Eggs. With two 8-inch high-quantum efficiency photomultiplier tubes (PMTs) per module, D-Eggs offer an increased effective area while retaining the successful design of the IceCube digital optical module (DOM). The convolution of the wavelength-dependent effective area and the Cherenkov emission spectrum provides an effective photodetection sensitivity that is 2.8 times larger than that of IceCube DOMs. The signal of each of the two PMTs is digitized using ultra-low-power 14-bit analog-to-digital converters with a sampling frequency of 240 MSPS, enabling a flexible event triggering, as well as seamless and lossless event recording of single-photon signals to multi-photons exceeding 200 photoelectrons within 10 ns. Mass production of D-Eggs has been completed, with 277 out of the 310 D-Eggs produced to be used in the IceCube Upgrade. In this paper, we report the design of the D-Eggs, as well as the sensitivity and the single to multi-photon detection performance of mass-produced D-Eggs measured in a laboratory using the built-in data acquisition system in each D-Egg optical sensor module.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 39

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy