SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hilhorst Henk) "

Sökning: WFRF:(Hilhorst Henk)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dekkers, Bas J W, et al. (författare)
  • The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development
  • 2016
  • Ingår i: The Plant Journal. - : Wiley-Blackwell. - 0960-7412 .- 1365-313X. ; 85:4, s. 451-465
  • Tidskriftsartikel (refereegranskat)abstract
    • The seed expressed gene DELAY OF GERMINATION (DOG) 1 is absolutely required for the induction of dormancy. Next to a non-dormant phenotype, the dog1-1 mutant is also characterized by a reduced seed longevity suggesting that DOG1 may affect additional seed processes as well. This aspect however, has been hardly studied and is poorly understood. To uncover additional roles of DOG1 in seeds we performed a detailed analysis of the dog1 mutant using both transcriptomics and metabolomics to investigate the molecular consequences of a dysfunctional DOG1 gene. Further, we used a genetic approach taking advantage of the weak aba insensitive (abi) 3-1 allele as a sensitized genetic background in a cross with dog1-1. DOG1 affects the expression of hundreds of genes including LATE EMBRYOGENESIS ABUNDANT and HEAT SHOCK PROTEIN genes which are affected by DOG1 partly via control of ABI5 expression. Furthermore, the content of a subset of primary metabolites, which normally accumulate during seed maturation, was found to be affected in the dog1-1 mutant. Surprisingly, the abi3-1 dog1-1 double mutant produced green seeds which are highly ABA insensitive, phenocopying severe abi3 mutants, indicating that dog1-1 acts as an enhancer of the weak abi3-1 allele and thus revealing a genetic interaction between both genes. Analysis of the dog1 and dog1 abi3 mutants revealed additional seed phenotypes and therefore we hypothesize that DOG1 function is not limited to dormancy but that it is required for multiple aspects of seed maturation, in part by interfering with ABA signalling components.
  •  
2.
  •  
3.
  • He, Hanzi, et al. (författare)
  • Effects of Parental Temperature and Nitrate on Seed Performance are Reflected by Partly Overlapping Genetic and Metabolic Pathways
  • 2016
  • Ingår i: Plant and Cell Physiology. - : Oxford University Press. - 0032-0781 .- 1471-9053. ; 57:3, s. 473-487
  • Tidskriftsartikel (refereegranskat)abstract
    • Seed performance is affected by the seed maturation environment and previously, we have shown that temperature, nitrate and light intensity were the most influential environmental factors affecting seed performance. Seeds developed in these environments were selected to assess the underlying metabolic pathways, using a combination of transcriptomics and metabolomics. These analyses revealed that the effects of the temperature and nitrate parental environments were reflected by partly overlapping genetic and metabolic networks, as indicated by similar changes in metabolites and transcripts expression levels. Nitrogen-metabolism related metabolites (asparagine, GABA and allantoin) were significantly decreased in both low temperature (15°C) and low nitrate (N0) maturation environments. Correspondingly, nitrogen-metabolism genes (ALLANTOINASE, NITRATE REDUCTASE 1, NITRITE REDUCTASE 1 and NITRILASE 4) were differentially regulated in the low temperature and nitrate maturation environments, as compared with control conditions. High light intensity during seed maturation increased galactinol content, and displayed a high correlation with seed longevity. Low light had a genotype-specific effect on cell surface encoding genes in the DELAY OF GERMINATION 6-Near Isogenic Line (NILDOG6). Overall, the integration of phenotypes, metabolites and transcripts led to new insights in the regulation of seed performance.
  •  
4.
  • Yazdanpanah, Farzaneh, et al. (författare)
  • Differentially expressed genes during the imbibition of dormant and after-ripened seeds : a reverse genetics approach
  • 2017
  • Ingår i: BMC Plant Biology. - : Springer Science and Business Media LLC. - 1471-2229. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Seed dormancy, defined as the incapability of a viable seed to germinate under favourable conditions, is an important trait in nature and agriculture. Despite extensive research on dormancy and germination, many questions about the molecular mechanisms controlling these traits remain unanswered, likely due to its genetic complexity and the large environmental effects which are characteristic of these quantitative traits. To boost research towards revealing mechanisms in the control of seed dormancy and germination we depend on the identification of genes controlling those traits.METHODS: We used transcriptome analysis combined with a reverse genetics approach to identify genes that are prominent for dormancy maintenance and germination in imbibed seeds of Arabidopsis thaliana. Comparative transcriptomics analysis was employed on freshly harvested (dormant) and after-ripened (AR; non-dormant) 24-h imbibed seeds of four different DELAY OF GERMINATION near isogenic lines (DOGNILs) and the Landsberg erecta (Ler) wild type with varying levels of primary dormancy. T-DNA knock-out lines of the identified genes were phenotypically investigated for their effect on dormancy and AR.RESULTS: We identified conserved sets of 46 and 25 genes which displayed higher expression in seeds of all dormant and all after-ripened DOGNILs and Ler, respectively. Knock-out mutants in these genes showed dormancy and germination related phenotypes.CONCLUSIONS: Most of the identified genes had not been implicated in seed dormancy or germination. This research will be useful to further decipher the molecular mechanisms by which these important ecological and commercial traits are regulated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy