SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hjort Line) "

Sökning: WFRF:(Hjort Line)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Broholm, Christa, et al. (författare)
  • Epigenome- and Transcriptome-wide Changes in Muscle Stem Cells from Low Birth Weight Men
  • 2020
  • Ingår i: Endocrine Research. - : Informa UK Limited. - 0743-5800 .- 1532-4206. ; 45:1, s. 58-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Being born with low birth weight (LBW) is a risk factor for muscle insulin resistance and type 2 diabetes (T2D), which may be mediated by epigenetic mechanisms programmed by the intrauterine environment. Epigenetic mechanisms exert their prime effects in developing cells. We hypothesized that muscle insulin resistance in LBW subjects may be due to early differential epigenomic and transcriptomic alterations in their immature muscle progenitor cells. Results: Muscle progenitor cells were obtained from 23 healthy young adult men born at term with LBW, and 15 BMI-matched normal birth weight (NBW) controls. The cells were subsequently cultured and differentiated into myotubes. DNA and RNA were harvested before and after differentiation for genome-wide DNA methylation and RNA expression measurements. After correcting for multiple comparisons (q ≤ 0.05), 56 CpG sites were found to be significantly, differentially methylated in myoblasts from LBW compared with NBW men, of which the top five gene-annotated CpG sites (SKI, ARMCX3, NR5A2, NEUROG, ESRRG) previously have been associated to regulation of cholesterol, fatty acid and glucose metabolism and muscle development or hypertrophy. LBW men displayed markedly decreased myotube gene expression levels of the AMPK-repressing tyrosine kinase gene FYN and the histone deacetylase gene HDAC7. Silencing of FYN and HDAC7 was associated with impaired myotube formation, which for HDAC7 reduced muscle glucose uptake. Conclusions: The data provides evidence of impaired muscle development predisposing LBW individuals to T2D is linked to and potentially caused by distinct DNA methylation and transcriptional changes including down regulation of HDAC7 and FYN in their immature myoblast stem cells.
  •  
2.
  • Davegårdh, Cajsa, et al. (författare)
  • VPS39-deficiency observed in type 2 diabetes impairs muscle stem cell differentiation via altered autophagy and epigenetics
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin resistance and lower muscle quality (strength divided by mass) are hallmarks of type 2 diabetes (T2D). Here, we explore whether alterations in muscle stem cells (myoblasts) from individuals with T2D contribute to these phenotypes. We identify VPS39 as an important regulator of myoblast differentiation and muscle glucose uptake, and VPS39 is downregulated in myoblasts and myotubes from individuals with T2D. We discover a pathway connecting VPS39-deficiency in human myoblasts to impaired autophagy, abnormal epigenetic reprogramming, dysregulation of myogenic regulators, and perturbed differentiation. VPS39 knockdown in human myoblasts has profound effects on autophagic flux, insulin signaling, epigenetic enzymes, DNA methylation and expression of myogenic regulators, and gene sets related to the cell cycle, muscle structure and apoptosis. These data mimic what is observed in myoblasts from individuals with T2D. Furthermore, the muscle of Vps39(+/-) mice display reduced glucose uptake and altered expression of genes regulating autophagy, epigenetic programming, and myogenesis. Overall, VPS39-deficiency contributes to impaired muscle differentiation and reduced glucose uptake. VPS39 thereby offers a therapeutic target for T2D. Insulin resistance and lower muscle strength in relation to mass are hallmarks of type 2 diabetes. Here, the authors report alterations in muscle stem cells from individuals with type 2 diabetes that may contribute to these phenotypes through VPS39 mediated effects on autophagy and epigenetics.
  •  
3.
  • Gillberg, Linn, et al. (författare)
  • Fasting unmasks differential fat and muscle transcriptional regulation of metabolic gene sets in low versus normal birth weight men
  • 2019
  • Ingår i: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 47, s. 341-351
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Individuals born with low birth weight (LBW) have an increased risk of metabolic diseases when exposed to diets rich in calories and fat but may respond to fasting in a metabolically preferential manner. We hypothesized that impaired foetal growth is associated with differential regulation of gene expression and epigenetics in metabolic tissues in response to fasting in young adulthood. Methods: Genome-wide expression and DNA methylation were analysed in subcutaneous adipose tissue (SAT) and skeletal muscle from LBW and normal birth weight (NBW) men after 36 h fasting and after an isocaloric control study using microarrays. Findings: Transcriptome analyses revealed that expression of genes involved in oxidative phosphorylation (OXPHOS) and other key metabolic pathways were lower in SAT from LBW vs NBW men after the control study, but paradoxically higher in LBW vs NBW men after 36 h fasting. Thus, fasting was associated with downregulated OXPHOS and metabolic gene sets in NBW men only. Likewise, in skeletal muscle only NBW men downregulated OXPHOS genes with fasting. Few epigenetic changes were observed in SAT and muscle between the groups. Interpretation: Our results provide insights into the molecular mechanisms in muscle and adipose tissue governing a differential metabolic response in subjects with impaired foetal growth when exposed to fasting in adulthood. The results support the concept of developmental programming of metabolic diseases including type 2 diabetes. Fund: The Swedish Research Council, the Danish Council for Strategic Research, the Novo Nordisk foundation, the Swedish Foundation for Strategic Research, The European Foundation for the Study of Diabetes, The EU 6th Framework EXGENESIS grant and Rigshospitalet.
  •  
4.
  • Grunnet, Louise Groth, et al. (författare)
  • High Prevalence of Gestational Diabetes Mellitus in Rural Tanzania-Diagnosis Mainly Based on Fasting Blood Glucose from Oral Glucose Tolerance Test
  • 2020
  • Ingår i: International Journal of Environmental Research and Public Health. - : MDPI AG. - 1660-4601. ; 17:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Gestational diabetes mellitus (GDM) is associated with poor pregnancy outcomes and increased long-term risk of metabolic diseases for both mother and child. In Tanzania, GDM prevalence increased from 0% in 1991 to 19.5% in 2016. Anaemia has been proposed to precipitate the pathogenesis of GDM. We aimed to examine the prevalence of GDM in a rural area of Tanzania with a high prevalence of anaemia and to examine a potential association between haemoglobin concentration and blood glucose during pregnancy. The participants were included in a population-based preconception, pregnancy and birth cohort study. In total, 538 women were followed during pregnancy and scheduled for an oral glucose tolerance test (OGTT) at week 32-34 of gestation. Gestational diabetes mellitus was diagnosed according to the WHO 2013 guidelines. Out of 392 women screened, 39% (95% CI: 34.2-44.1) had GDM, the majority of whom (94.1%) were diagnosed based solely on the fasting blood sample from the OGTT. No associations were observed between haemoglobin or ferritin and glucose measurements during pregnancy. A very high prevalence of GDM was found in rural Tanzania. In view of the laborious, costly and inconvenient OGTT, alternative methods such as fasting blood glucose should be considered when screening for GDM in low- and middle-income countries.
  •  
5.
  • Hansen, Ninna Schiøler, et al. (författare)
  • Fetal hyperglycemia changes human preadipocyte function in adult life
  • 2017
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 102:4, s. 1141-1150
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Offspring of women with gestational diabetes (O-GDM) or type 1 diabetes mellitus (O-T1DM) have been exposed to hyperglycemia in utero and have an increased risk of developing metabolic disease in adulthood. Design: In total, we recruited 206 adult offspring comprising the two fetal hyperglycemic groups, O-GDM and O-T1DM, and, as a control group, offspring from the background population (O-BP). Subcutaneous fat biopsies were obtained and preadipocyte cell cultures were established from adult male O-GDM (n = 18, age 30.1 ± 2.5 years), O-T1DM (n = 18, age 31.6 ± 2.2 years), and O-BP (n = 16; age, 31.5 ± 2.7 years) and cultured in vitro. Main Outcome Measures: First, we studied in vivo adipocyte histology. Second, we studied in vitro preadipocyte leptin secretion, gene expression, and LEP DNA methylation. This was studied in combination with in vitro preadipocyte lipogenesis, lipolysis, and mitochondrial respiration. Results: We show that subcutaneous adipocytes from O-GDM are enlarged compared with O-BP adipocytes. Preadipocytes isolated from male O-GDM and O-T1DM and cultured in vitro displayed decreased LEP promoter methylation, increased leptin gene expression, and elevated leptin secretion throughout differentiation, compared with adipocytes established from male O-BP. In addition, the preadipocytes demonstrated functional defects including decreased maximal mitochondrial capacity with increased lipolysis and decreased ability to store fatty acids when challenged with 3 days of extra fatty acid supply. Conclusions: Taken together, these findings show that intrinsic epigenetic and functional changes exist in preadipocyte cultures from individuals exposed to fetal hyperglycemia who are at increased risk of developing metabolic disease.
  •  
6.
  • Hatem, Gad, et al. (författare)
  • Mapping the cord blood transcriptome of pregnancies affected by early maternal anemia to identify signatures of fetal programming
  • 2022
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 107:5, s. 1303-1316
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Anemia during early pregnancy (EP) is common in developing countries and is associated with adverse health consequences for both mother and children. Offspring of women with EP anemia often have low birth-weight, the latter being a risk factor for cardiometabolic diseases including type 2 diabetes (T2D) later in life. Mechanisms underlying developmental programming of adult cardiometabolic disease include epigenetic and transcriptional alterations potentially detectable in umbilical cord blood (UCB) at time of birth.METHODS: We leveraged global transcriptome- and accompanying epigenome-wide changes in 48 UCB from newborns of EP-anemic Tanzanian mothers and 50 controls to identify differentially expressed genes (DEG) in UCB exposed to maternal EP-anemia. DEGs were assessed for association with neonatal anthropometry and cord insulin levels. These genes were further studied in expression data from human fetal pancreas and adult islets to understand their role in beta-cell development and/or function.RESULTS: The expression of 137 genes was altered in UCB of newborns exposed to maternal EP anemia. These putative signatures of fetal programming which included the birth-weight locus LCORL, were potentially mediated by epigenetic changes in 27 genes and associated with neonatal anthropometry. Among the DEGs were P2RX7, PIK3C2B, and NUMBL which potentially influence beta-cell development. Insulin levels were lower in EP anemia exposed UCB, supporting the notion of developmental programming of pancreatic beta-cell dysfunction and subsequently increased risk of T2D in offspring of EP anemic mothers.CONCLUSIONS: Our data provide proof-of-concept on distinct transcriptional and epigenetic changes detectable in UCB from newborns exposed to maternal EP anemia.
  •  
7.
  • Hjort, Line, et al. (författare)
  • 36 h fasting of young men influences adipose tissue DNA methylation of LEP and ADIPOQ in a birth weight-dependent manner
  • 2017
  • Ingår i: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7075 .- 1868-7083. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Subjects born with low birth weight (LBW) display a more energy-conserving response to fasting compared with normal birth weight (NBW) subjects. However, the molecular mechanisms explaining these metabolic differences remain unknown. Environmental influences may dynamically affect epigenetic marks, also in postnatal life. Here, we aimed to study the effects of short-term fasting on leptin (LEP) and adiponectin (ADIPOQ) DNA methylation and gene expression in subcutaneous adipose tissue (SAT) from subjects with LBW and NBW. Methods: Twenty-one young LBW men and 18 matched NBW controls were studied during 36 h fasting. Eight subjects from each group completed a control study (overnight fast). We analyzed SAT LEP and ADIPOQ methylation (Epityper MassARRAY), gene expression (q-PCR), and adipokine plasma levels. Results: After overnight fast (control study), LEP and ADIPOQ DNA methylation levels were higher in LBW compared to those in NBW subjects (p ≤ 0.03) and increased with 36 h fasting in NBW subjects only (p ≤ 0.06). Both LEP and ADIPOQ methylation levels were positively associated with total body fat percentage (p ≤ 0.05). Plasma leptin levels were higher in LBW versus NBW subjects after overnight fasting (p = 0.04) and decreased more than threefold in both groups after 36 h fasting (p ≤ 0.0001). Conclusions: This is the first study to demonstrate that fasting induces changes in DNA methylation. This was shown in LEP and ADIPOQ promoters in SAT among NBW but not LBW subjects. The altered epigenetic flexibility in LBW subjects might contribute to their differential response to fasting, adipokine levels, and increased risk of metabolic disease.
  •  
8.
  • Hjort, Line, et al. (författare)
  • FOETAL for NCD-FOetal Exposure and Epidemiological Transitions : the role of Anaemia in early Life for Non-Communicable Diseases in later life: a prospective preconception study in rural Tanzania
  • 2019
  • Ingår i: BMJ Open. - : BMJ. - 2044-6055. ; 9:5
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Low-income and middle-income countries such as Tanzania experience a high prevalence of non-communicable diseases (NCDs), including anaemia. Studying if and how anaemia affects growth, placenta development, epigenetic patterns and newborns' risk of NCDs may provide approaches to prevent NCDs.PARTICIPANTS: The FOETALforNCD (FOetal Exposure and Epidemiological Transitions: the role of Anaemia in early Life for Non-Communicable Diseases in later life) Study is a population-based preconception, pregnancy and birth cohort study (n=1415, n=538, n=427, respectively), conducted in a rural region of North-East Tanzania. All participants were recruited prior to conception or early in pregnancy and followed throughout pregnancy as well as at birth. Data collection included: maternal blood, screening for NCDs and malaria, ultrasound in each trimester, neonatal anthropometry at birth and at 1 month of age, cord blood, placental and cord biopsies for stereology and epigenetic analyses.FINDINGS TO DATE: At preconception, the average age, body mass index and blood pressure of the women were 28 years, 23 kg/m2 and 117/75 mm Hg, respectively. In total, 458 (36.7%) women had anaemia (haemoglobin Hb <12 g/dL) and 34 (3.6%) women were HIV-positive at preconception. During pregnancy 359 (66.7%) women had anaemia of which 85 (15.8%) women had moderate-to-severe anaemia (Hb ≤9 g/dL) and 33 (6.1%) women had severe anaemia (Hb ≤8 g/dL). In total, 185 (34.4%) women were diagnosed with malaria during pregnancy.FUTURE PLANS: The project will provide new knowledge on how health, even before conception, might modify the risk of developing NCDs and how to promote better health during pregnancy. The present project ended data collection 1 month after giving birth, but follow-up is continuing through regular monitoring of growth and development and health events according to the National Road Map Strategic Plan in Tanzania. This data will link fetal adverse event to childhood development, and depending on further grant allocation, through a life course follow-up.
  •  
9.
  • Hjort, Line, et al. (författare)
  • Gestational diabetes and maternal obesity are associated with epigenome-wide methylation changes in children
  • 2018
  • Ingår i: JCI Insight. - : American Society for Clinical Investigation. - 2379-3708. ; 3:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Offspring of women with gestational diabetes mellitus (GDM) are at increased risk of developing metabolic disease, potentially mediated by epigenetic mechanisms. We recruited 608 GDM and 626 control offspring from the Danish National Birth Cohort, aged between 9 and 16 years. DNA methylation profiles were measured in peripheral blood of 93 GDM offspring and 95 controls using the Illumina HumanMethylation450 BeadChip. Pyrosequencing was performed for validation/replication of putative GDM-associated, differentially methylated CpGs in additional 905 offspring (462 GDM, 444 control offspring). We identified 76 differentially methylated CpGs in GDM offspring compared with controls in the discovery cohort (FDR, P < 0.05). Adjusting for offspring BMI did not affect the association between methylation levels and GDM status for any of the 76 CpGs. Most of these epigenetic changes were due to confounding by maternal prepregnancy BMI; however, 13 methylation changes were independently associated with maternal GDM. Three prepregnancy BMI-associated CpGs (cg00992687 and cg09452568 of ESM1 and cg14328641 of MS4A3) were validated in the replication cohort, while cg09109411 (PDE6A) was found to be associated with GDM status. The identified methylation changes may reflect developmental programming of organ disease mechanisms and/or may serve as disease biomarkers.
  •  
10.
  • Huang, Mi, et al. (författare)
  • Human Genetic Variation at rs10071329 Correlates with Adiposity-related Traits, Modulates PPARGC1B Expression, and Alters Brown Adipocyte Function
  • Ingår i: Diabetes. - 1939-327X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Human genetic variation in PPARGC1B has been associated with adiposity, but the genetic variants that affect PPARGC1B expression have not been experimentally determined. Here, guided by previous observational data, we used CRISPR/Cas9 to scarlessly edit the alleles of the candidate causal genetic variant rs10071329 in a human brown adipocyte cell line (hBAs). Switching the rs10071329 genotype from A/A to G/G enhanced PPARGC1B expression throughout the adipogenic differentiation, identifying rs10071329 as a cis-eQTL. The higher PPARGC1B expression in G/G cells coincided with greater accumulation of triglycerides, and higher expression of mitochondria-encoded genes, but without significant effects on adipogenic marker expression. Furthermore, G/G cells had improved basal- and norepinephrine-stimulated mitochondrial respiration, possibly relating to enhanced mitochondrial gene expression. The G/G cells also exhibited increased norepinephrine-stimulated glycerol release, indicating improved lipolysis. Altogether, our results showed that rs10071329 is a cis-eQTL, with the G/G genotype conferring enhanced PPARGC1B expression, with consequent improved mitochondrial function and response to norepinephrine in brown adipocytes. This genetic variant, and as yet undetermined eQTLs, at PPARGC1B could prove useful in genotype-based precision medicine for obesity treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy