SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hjorth Martin) ;pers:(Nespral David)"

Sökning: WFRF:(Hjorth Martin) > Nespral David

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Subjak, Jan, et al. (författare)
  • TOI-503: The First Known Brown-dwarf Am-star Binary from the TESS Mission
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 159:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of an intermediate-mass transiting brown dwarf (BD), TOI-503b, from the TESS mission. TOI-503b is the first BD discovered by TESS, and it has circular orbit around a metallic-line A-type star with a period of P.=.3.6772.+/-.0.0001 days. The light curve from TESS indicates that TOI-503b transits its host star in a grazing manner, which limits the precision with which we measure the BD's radius ( = R 1.34+ R b 0.150.26 J). We obtained highresolution spectroscopic observations with the FIES, Ondr.ejov, PARAS, Tautenburg, and TRES spectrographs, and measured the mass of TOI-503b to be Mb.=.53.7.+/-.1.2 MJ. The host star has a mass of Ma.=.1.80.+/-.0.06Me, a radius of Ra.=.1.70.+/-.0.05Re, an effective temperature of Teff.=.7650.+/-.160 K, and a relatively high metallicity of 0.61.+/-.0.07 dex. We used stellar isochrones to derive the age of the system to be 180 Myr, which places its age between that of RIK 72b (a 10 Myr old BD in the Upper Scorpius stellar association) and AD 3116b (a 600 Myr old BD in the Praesepe cluster). Given the difficulty in measuring the tidal interactions between BDs and their host stars, we cannot precisely say whether this BD formed in situ or has had its orbit circularized by its host star over the relatively short age of the system. Instead, we offer an examination of plausible values for the tidal quality factor for the star and BD. TOI-503b joins a growing number of known short-period, intermediate-mass BDs orbiting mainsequence stars, and is the second such BD known to transit an A star, after HATS-70b. With the growth in the population in this regime, the driest region in the BD desert (35-55MJ sin i) is reforesting.
  •  
2.
  • Carleo, Ilaria, et al. (författare)
  • The Multiplanet System TOI-421*
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 160:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations-comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echelle Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution echelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements-and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P-b = 5.19672 +/- 0.00049 days, a mass of M-b = 7.17 +/- 0.66 M-circle plus, and a radius of R-b = R-circle plus, whereas the outer warm Neptune, TOI-421 c, has a period of P-c = 16.06819 +/- 0.00035 days, a mass of M-c = 16.42(-1.04)(+1.06)M(circle plus), a radius of R-c = 5.09(-0.15)(+0.16)R(circle plus), and a density of rho(c) = 0.685(-0.072)(+0.080) cm(-3). With its characteristics, the outer planet (rho(c) = 0.685(-0.0072)(+0.080) cm(-3)) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Ly alpha transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed.
  •  
3.
  • Gandolfi, Davide, et al. (författare)
  • The Transiting Multi-planet System HD 3167: A 5.7 M ⊕ Super-Earth and an 8.3 M ⊕ Mini-Neptune
  • 2017
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 154:3, s. 123-
  • Tidskriftsartikel (refereegranskat)abstract
    • HD 3167 is a bright (V = 8.9 mag) K0 V star observed by NASA’s K2 space mission during its Campaign 8. It has recently been found to host two small transiting planets, namely, HD 3167b, an ultra-short-period (0.96 days) super-Earth, and HD 3167c, a mini-Neptune on a relatively long-period orbit (29.85 days). Here we present an intensive radial velocity (RV) follow-up of HD 3167 performed with the FIES@NOT, HARPS@ESO-3.6 m, and HARPS-N@TNG spectrographs. We revise the system parameters and determine radii, masses, and densities of the two transiting planets by combining the K2 photometry with our spectroscopic data. With a mass of 5.69 ± 0.44 M⊕, a radius of 1.574 ± 0.054 R⊕, and a mean density of {8.00}-0.98+1.10 g cm^-3, HD 3167b joins the small group of ultra-short-period planets known to have rocky terrestrial compositions. HD 3167c has a mass of 8.33-1.85+1.79 M⊕ and a radius of 2.74}-0.100+0.106 R⊕, yielding a mean density of 2.21-0.53+0.56 g cm^-3, indicative of a planet with a composition comprising a solid core surrounded by a thick atmospheric envelope. The rather large pressure scale height (∼350 km) and the brightness of the host star make HD 3167c an ideal target for atmospheric characterization via transmission spectroscopy across a broad range of wavelengths. We found evidence of additional signals in the RV measurements but the currently available data set does not allow us to draw any firm conclusions on the origin of the observed variation.
  •  
4.
  • Hjorth, M., et al. (författare)
  • K2-290: A warm Jupiter and a mini-Neptune in a triple-star system
  • 2019
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 484:3, s. 3522-3536
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of two transiting planets orbiting K2-290 (EPIC 249624646), a bright (V = 11.11) late F-type star residing in a triple-star system. It was observed during Campaign 15 of the K2 mission, and in order to confirm and characterize the system, follow-up spectroscopy and AO imaging were carried out using the FIES, HARPS, HARPS-N, and IRCS instruments. From AO imaging and Gaia data we identify two M-dwarf companions at a separation of 113 ± 2 and 2467+−177155 au. From radial velocities, K2 photometry, and stellar characterization of the host star, we find the inner planet to be a mini-Neptune with a radius of 3.06 ± 0.16 R and an orbital period of P = 9.2 d. The radius of the mini-Neptune suggests that the planet is located above the radius valley, and with an incident flux of F ∼ 400 F, it lies safely outside the super-Earth desert. The outer warm Jupiter has a mass of 0.774 ± 0.047 MJ and a radius of 1.006 ± 0.050 RJ, and orbits the host star every 48.4 d on an orbit with an eccentricity e < 0.241. Its mild eccentricity and mini-Neptune sibling suggest that the warm Jupiter originates from in situ formation or disc migration.
  •  
5.
  • Lam, Kristine W. F., et al. (författare)
  • It Takes Two Planets in Resonance to Tango around K2-146
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 159:3
  • Tidskriftsartikel (refereegranskat)abstract
    • K2-146 is a cool, 0.358M dwarf that was found to host a mini-Neptune with a 2.67 day period. The planet exhibited strong transit timing variations (TTVs) of greater than 30 minutes, indicative of the presence of an additional object in the system. Here we report the discovery of the previously undetected outer planet in the system, K2-146 c, using additional photometric data. K2-146 c was found to have a grazing transit geometry and a 3.97 day period. The outer planet was only significantly detected in the latter K2 campaigns presumably because of precession of its orbital plane. The TTVs of K2-146 b and c were measured using observations spanning a baseline of almost 1200 days. We found strong anti -correlation in the TTVs, suggesting the two planets are gravitationally interacting. Our TTV and transit model analyses revealed that K2-146 b has a radius of 2.25 0.10 Re and a mass of 5.6 0.7 Me, whereas K2-146 c has a radius of 2.591 Re and a mass of 7.1 0.9 Me. The inner and outer planets likely have moderate eccentricities of e = 0.14 0.07 and 0.16 0.07, respectively. Long-term numerical integrations of the two -planet orbital solution show that it can be dynamically stable for at least 2 Myr. We show that the resonance angles of the planet pair are librating, which may be an indication that K2-146 b and c are in a 3:2 mean motion resonance. The orbital architecture of the system points to a possible convergent migration origin.
  •  
6.
  • Nowak, Grzegorz, et al. (författare)
  • K2-280 b - a low density warm sub-Saturn around a mildly evolved star
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 497:4, s. 4423-4435
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an independent discovery and detailed characterization of K2-280 b, a transiting low density warm sub-Saturn in a 19.9-d moderately eccentric orbit (e = 0.35(-0.04)(+0.05)) from K2 campaign 7. A joint analysis of high precision HARPS, HARPS-N, and FIES radial velocity measurements and K2 photometric data indicates that K2-280 b has a radius of R-b = 7.50 +/- 0.44 R-circle plus and a mass of M-b = 37.1 +/- 5.6 M-circle plus, yielding a mean density of rho(b) = 0.48(-0.10)(+0.13) g cm(-3). The host star is a mildly evolved G7 star with an effective temperature of T-eff = 5500 +/- 100 K, a surface gravity of log g(star) = 4.21 +/- 0.05 (cgs), and an iron abundance of [Fe/H] = 0.33 +/- 0.08 dex, and with an inferred mass of M-star = 1.03 +/- 0.03 M-circle dot and a radius of R-star = 1.28 +/- 0.07 R-circle dot. We discuss the importance of K2-280 b for testing formation scenarios of sub-Saturn planets and the current sample of this intriguing group of planets that are absent in the Solar system.
  •  
7.
  • Persson, Carina, 1964, et al. (författare)
  • Greening of the brown-dwarf desert EPIC 212036875b: a 51 M-J object in a 5-day orbit around an F7V star
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 628
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Although more than 2000 brown dwarfs have been detected to date, mainly from direct imaging, their characterisation is difficult due to their faintness and model-dependent results. In the case of transiting brown dwarfs, however, it is possible to make direct high-precision observations. Aims. Our aim is to investigate the nature and formation of brown dwarfs by adding a new well-characterised object, in terms of its mass, radius and bulk density, to the currently small sample of less than 20 transiting brown dwarfs. Methods. One brown dwarf candidate was found by the KESPRINT consortium when searching for exoplanets in the K2 space mission Campaign 16 field. We combined the K2 photometric data with a series of multicolour photometric observations, imaging, and radial velocity measurements to rule out false positive scenarios and to determine the fundamental properties of the system. Results. We report the discovery and characterisation of a transiting brown dwarf in a 5.17-day eccentric orbit around the slightly evolved F7V star EPIC 212036875. We find a stellar mass of 1.15 +/- 0.08 M-circle dot, a stellar radius of 1.41 +/- 0.05 R-circle dot, and an age of 5.1 +/- 0.9 Gyr. The mass and radius of the companion brown dwarf are 51 +/- 2 M-J and 0.83 +/- 0.03 R-J, respectively, corresponding to a mean density of 108(-13)(+15) g cm(-3). Conclusions. EPIC 212036875 b is a rare object that resides in the brown-dwarf desert. In the mass-density diagram for planets, brown dwarfs, and stars, we find that all giant planets and brown dwarfs follow the same trend from similar to 0.3 M-J to the turn-over to hydrogen burning stars at similar to 73 M-J. EPIC 212036875 b falls close to the theoretical model for mature H/He dominated objects in this diagram as determined by interior structure models. We argue that EPIC 212036875 b formed via gravitational disc instabilities in the outer part of the disc, followed by a quick migration. Orbital tidal circularisation may have started early in its history for a brief period when the brown dwarf's radius was larger. The lack of spin-orbit synchronisation points to a weak stellar dissipation parameter (Q(star)' greater than or similar to 10(8)), which implies a circularisation timescale of greater than or similar to 23 Gyr, or suggests an interaction between the magnetic and tidal forces of the star and the brown dwarf.
  •  
8.
  • Prieto-Arranz, J., et al. (författare)
  • Mass determination of the 1:3:5 near-resonant planets transiting GJ 9827 (K2-135)
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 618
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Multiplanet systems are excellent laboratories to test planet formation models as all planets are formed under the same initial conditions. In this context, systems transiting bright stars can play a key role, since planetary masses, radii, and bulk densities can be measured. Aims. GJ 9827 (K2-135) has recently been found to host a tightly packed system consisting of three transiting small planets whose orbital periods of 1.2, 3.6, and 6.2 days are near the 1:3:5 ratio. GJ 9827 hosts the nearest planetary system (~30 pc) detected by NASA's Kepler or K2 space mission. Its brightness (V = 10.35 mag) makes the star an ideal target for detailed studies of the properties of its planets. Methods. Combining the K2 photometry with high-precision radial-velocity measurements gathered with the FIES, HARPS, and HARPS-N spectrographs we revised the system parameters and derive the masses of the three planets. Results. We find that GJ 9827 b has a mass of Mb = 3.69-0.46+0.48 M and a radius of Rb = 1.58-0.13+0.14 R, yielding a mean density of ρb = 5.11-1.27+1.74 g cm-3. GJ 9827 c has a mass of Mc = 1.45-0.57+0.58 M, radius of Rc = 1.24-0.11+0.11 R, and a mean density of ρc = 4.13-1.77+2.31 g cm-3. For GJ 9827 d, we derive Md = 1.45-0.57+0.58 M, Rd = 1.24-0.11+0.11 R, and ρd = 1.51-0.53+0.71 g cm-3. Conclusions. GJ 9827 is one of the few known transiting planetary systems for which the masses of all planets have been determined with a precision better than 30%. This system is particularly interesting because all three planets are close to the limit between super-Earths and sub-Neptunes. The planetary bulk compositions are compatible with a scenario where all three planets formed with similar core and atmosphere compositions, and we speculate that while GJ 9827 b and GJ 9827 c lost their atmospheric envelopes, GJ 9827 d maintained its primordial atmosphere, owing to the much lower stellarirradiation. This makes GJ 9827 one of the very few systems where the dynamical evolution and the atmosphericescape can be studied in detail for all planets, helping us to understand how compact systems form and evolve.
  •  
9.
  • Van Eylen, Vincent, et al. (författare)
  • HD 89345: A bright oscillating star hosting a transiting warm Saturn-sized planet observed by K2
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 478:4, s. 4866-4880
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and characterization of HD 89345b (K2-234b; EPIC 248777106b), a Saturn-sized planet orbiting a slightly evolved star. HD 89345 is a bright star (V = 9.3 mag) observed by the K2 mission with 1 min time sampling. It exhibits solar-like oscillations. We conducted asteroseismology to determine the parameters of the star, finding themass and radius to be 1.12-0.01+0.04M⊙and 1.657-0.004+0.020R⊙, respectively. The star appears to have recently left the main sequence, based on the inferred age, 9.4-1.3+0.4Gyr, and the non-detection of mixed modes. The star hosts a 'warm Saturn' (P = 11.8 d, Rp= 6.86 ± 0.14 R⊕). Radial-velocity follow-up observations performed with the FIbre-fed Echelle Spectrograph, HARPS, and HARPS-N spectrographs show that the planet has a mass of 35.7 ± 3.3 M⊕. The data also show that the planet's orbit is eccentric (e≈0.2). An investigation of the rotational splitting of the oscillation frequencies of the star yields no conclusive evidence on the stellar inclination angle. We further obtained Rossiter-McLaughlin observations, which result in a broad posterior of the stellar obliquity. The planet seems to confirm to the same patterns that have been observed for other sub-Saturns regarding planet mass and multiplicity, orbital eccentricity, and stellar metallicity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy