SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holland Dominic) ;hsvcat:3"

Sökning: WFRF:(Holland Dominic) > Medicin och hälsovetenskap

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lo, Min-Tzu, et al. (författare)
  • Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders
  • 2017
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 49:1, s. 152-156
  • Tidskriftsartikel (refereegranskat)abstract
    • Personality is influenced by genetic and environmental factors(1) and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci(2,3), significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132-260,861). Of these genome-wide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422-18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit- hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion-introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety).
  •  
3.
  • Chen, Chi-Hua, et al. (författare)
  • Leveraging genome characteristics to improve gene discovery for putamen subcortical brain structure
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Discovering genetic variants associated with human brain structures is an on-going effort. The ENIGMA consortium conducted genome-wide association studies (GWAS) with standard multi-study analytical methodology and identified several significant single nucleotide polymorphisms (SNPs). Here we employ a novel analytical approach that incorporates functional genome annotations (e.g., exon or 5′UTR), total linkage disequilibrium (LD) scores and heterozygosity to construct enrichment scores for improved identification of relevant SNPs. The method provides increased power to detect associated SNPs by estimating stratum-specific false discovery rate (FDR), where strata are classified according to enrichment scores. Applying this approach to the GWAS summary statistics of putamen volume in the ENIGMA cohort, a total of 15 independent significant SNPs were identified (conditional FDR < 0.05). In contrast, 4 SNPs were found based on standard GWAS analysis (P < 5 × 10−8). These 11 novel loci include GATAD2B, ASCC3, DSCAML1, and HELZ, which are previously implicated in various neural related phenotypes. The current findings demonstrate the boost in power with the annotation-informed FDR method, and provide insight into the genetic architecture of the putamen.
  •  
4.
  • Desikan, Rahul S, et al. (författare)
  • Amyloid-β associated volume loss occurs only in the presence of phospho-tau.
  • 2011
  • Ingår i: Annals of neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 70:4, s. 657-61
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationship between neurodegeneration and the 2 hallmark proteins of Alzheimer's disease, amyloid-β (Aβ) and tau, is still unclear. Here, we examined 286 nondemented participants (107 cognitively normal older adults and 179 memory impaired individuals) who underwent longitudinal magnetic resonance (MR) imaging and lumbar puncture. Using mixed effects models, we investigated the relationship between longitudinal entorhinal cortex atrophy rate, cerebrospinal fluid (CSF) p-tau(181p) and CSF Aβ(1-42) . We found a significant relationship between elevated entorhinal cortex atrophy rate and decreased CSF Aβ(1-42) only with elevated CSF p-tau(181p) . Our findings indicate that Aβ-associated volume loss occurs only in the presence of phospho-tau in humans at risk for dementia.
  •  
5.
  • Desikan, Rahul S, et al. (författare)
  • The role of clusterin in amyloid-β-associated neurodegeneration.
  • 2014
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 71:2, s. 180-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Converging evidence indicates that clusterin, a chaperone glycoprotein, influences Alzheimer disease neurodegeneration. However, the precise role of clusterin in Alzheimer disease pathogenesis is still not well understood.
  •  
6.
  • Fjell, Anders M, et al. (författare)
  • Brain Atrophy in Healthy Aging Is Related to CSF Levels of A{beta}1-42.
  • 2010
  • Ingår i: Cerebral cortex. - : Oxford University Press (OUP). - 1460-2199 .- 1047-3211. ; 20:9, s. 2069-2079
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced levels of beta-amyloid(1-42) (Abeta1-42) and increased levels of tau proteins in the cerebrospinal fluid (CSF) are found in Alzheimer's disease (AD), likely reflecting Abeta deposition in plaques and neuronal and axonal damage. It is not known whether these biomarkers are associated with brain atrophy also in healthy aging. We tested the relationship between CSF levels of Abeta1-42 and tau (total tau and tau phosphorylated at threonine 181) proteins and 1-year brain atrophy in 71 cognitively normal elderly individuals. Results showed that under a certain threshold value, levels of Abeta1-42 correlated highly with 1-year change in a wide range of brain areas. The strongest relationships were not found in the regions most vulnerable early in AD. Above the threshold level, Abeta1-42 was not related to brain changes, but significant volume reductions as well as ventricular expansion were still seen. It is concluded that Abeta1-42 correlates with brain atrophy and ventricular expansion in a subgroup of cognitively normal elderly individuals but that reductions independent of CSF levels of Abeta1-42 is common. Further research and follow-up examinations over several years are needed to test whether degenerative pathology will eventually develop in the group of cognitively normal elderly individuals with low levels of Abeta1-42.
  •  
7.
  • Kauppi, Karolina, et al. (författare)
  • Combining Polygenic Hazard Score With Volumetric MRI and Cognitive Measures Improves Prediction of Progression From Mild Cognitive Impairment to Alzheimer's Disease
  • 2018
  • Ingår i: Frontiers in Neuroscience. - : Frontiers Media S.A.. - 1662-4548 .- 1662-453X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Improved prediction of progression to Alzheimer's Disease (AD) among older individuals with mild cognitive impairment (MCI) is of high clinical and societal importance. We recently developed a polygenic hazard score (PHS) that predicted age of AD onset above and beyond APOE. Here, we used data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to further explore the potential clinical utility of PHS for predicting AD development in older adults with MCI. We examined the predictive value of PHS alone and in combination with baseline structural magnetic resonance imaging (MRI) data on performance on the Mini-Mental State Exam (MMSE). In survival analyses, PHS significantly predicted time to progression from MCI to AD over 120 months (p = 1.07e-5), and PHS was significantly more predictive than APOE alone (p = 0.015). Combining PHS with baseline brain atrophy score and/or MMSE score significantly improved prediction compared to models without PHS (three-factor model p = 4.28e-17). Prediction model accuracies, sensitivities and area under the curve were also improved by including PHS in the model, compared to only using atrophy score and MMSE. Further, using linear mixed-effect modeling, PHS improved the prediction of change in the Clinical Dementia Rating—Sum of Boxes (CDR-SB) score and MMSE over 36 months in patients with MCI at baseline, beyond both APOE and baseline levels of brain atrophy. These results illustrate the potential clinical utility of PHS for assessment of risk for AD progression among individuals with MCI both alone, or in conjunction with clinical measures of prodromal disease including measures of cognitive function and regional brain atrophy.
  •  
8.
  • Lo, Min-Tzu, et al. (författare)
  • Modeling prior information of common genetic variants improves gene discovery for neuroticism
  • 2017
  • Ingår i: Human Molecular Genetics. - : OXFORD UNIV PRESS. - 0964-6906 .- 1460-2083. ; 26:22, s. 4530-4539
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroticism reflects emotional instability, and is related to various mental and physical health issues. However, the majority of genetic variants associated with neuroticism remain unclear. Inconsistent genetic variants identified by different genome-wide association studies (GWAS) may be attributable to low statistical power. We proposed a novel framework to improve the power for gene discovery by incorporating prior information of single nucleotide polymorphisms (SNPs) and combining two relevant existing tools, relative enrichment score (RES) and conditional false discovery rate (FDR). Here, SNP's conditional FDR was estimated given its RES based on SNP prior information including linkage disequilibrium (LD)-weighted genic annotation scores, total LD scores and heterozygosity. A known significant locus in chromosome 8p was excluded before estimating FDR due to long-range LD structure. Only one significant LD-independent SNP was detected by analyses of unconditional FDR and traditional GWAS in the discovery sample (N = 59 225), and notably four additional SNPs by conditional FDR. Three of the five SNPs, all identified by conditional FDR, were replicated (P < 0.05) in an independent sample (N = 170 911). These three SNPs are located in intronic regions of CADM2, LINGO2 and EP300 which have been reported to be associated with autism, Parkinson's disease and schizophrenia, respectively. Our approach using a combination of RES and conditional FDR improved power of traditional GWAS for gene discovery providing a useful framework for the analysis of GWAS summary statistics by utilizing SNP prior information, and helping to elucidate the links between neuroticism and complex diseases from a genetic perspective.
  •  
9.
  • Oltedal, Leif, et al. (författare)
  • The Global ECT-MRI Research Collaboration (GEMRIC): Establishing a multi-site investigation of the neural mechanisms underlying response to electroconvulsive therapy
  • 2017
  • Ingår i: NeuroImage. - : ELSEVIER SCI LTD. - 2213-1582. ; 14, s. 422-432
  • Tidskriftsartikel (refereegranskat)abstract
    • Major depression, currently the worlds primary cause of disability, leads to profound personal suffering and increased risk of suicide. Unfortunately, the success of antidepressant treatment varies amongst individuals and can take weeks to months in those who respond. Electroconvulsive therapy (ECT), generally prescribed for the most severely depressed and when standard treatments fail, produces a more rapid response and remains the most effective intervention for severe depression. Exploring the neurobiological effects of ECT is thus an ideal approach to better understand the mechanisms of successful therapeutic response. Though several recent neuroimaging studies show structural and functional changes associated with ECT, not all brain changes associate with clinical outcome. Larger studies that can address individual differences in clinical and treatment parameters may better target biological factors relating to or predictive of ECT-related therapeutic response. We have thus formed the Global ECT-MRI Research Collaboration (GEMRIC) that aims to combine longitudinal neuroimaging as well as clinical, behavioral and other physiological data across multiple independent sites. Here, we summarize the ECT sample characteristics from currently participating sites, and the common data-repository and standardized image analysis pipeline developed for this initiative. This includes data harmonization across sites and MRI platforms, and a method for obtaining unbiased estimates of structural change based on longitudinal measurements with serial MRI scans. The optimized analysis pipeline, together with the large and heterogeneous combined GEMRIC dataset, will provide new opportunities to elucidate the mechanisms of ECT response and the factors mediating and predictive of clinical outcomes, which may ultimately lead to more effective personalized treatment approaches. (C) 2017 The Author(s). Published by Elsevier Inc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy