SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hollegaard Mads V) "

Sökning: WFRF:(Hollegaard Mads V)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Horikoshi, Momoko, et al. (författare)
  • New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism.
  • 2013
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 45:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood. Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits. In an expanded genome-wide association meta-analysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.
  •  
2.
  • Huckins, Laura M., et al. (författare)
  • Gene expression imputation across multiple brain regions provides insights into schizophrenia risk
  • 2019
  • Ingår i: Nature genetics. - 1546-1718. ; 51:4, s. 659-
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression.
  •  
3.
  • Ripke, Stephan, et al. (författare)
  • Biological insights from 108 schizophrenia-associated genetic loci
  • 2014
  • Ingår i: Nature. - 0028-0836. ; 511:7510, s. 421-427
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.
  •  
4.
  • Dahlin, Anna M., et al. (författare)
  • CCND2, CTNNB1, DDX3X, GLI2, SMARCA4, MYC, MYCN, PTCH1, TP53, and MLL2 gene variants and risk of childhood medulloblastoma
  • 2015
  • Ingår i: Journal of Neuro-Oncology. - 0167-594X. ; 125:1, s. 75-78
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies have described a number of genes that are frequently altered in medulloblastoma tumors and that have putative key roles in the development of the disease. We hypothesized that common germline genetic variations in these genes may be associated with medulloblastoma development. Based on recent publications, we selected 10 genes that were frequently altered in medulloblastoma: CCND2, CTNNB1, DDX3X, GLI2, SMARCA4, MYC, MYCN, PTCH1, TP53, and MLL2 (now renamed as KMT2D). Common genetic variants (single nucleotide polymorphisms) annotating these genes (n = 221) were genotyped in germline DNA (neonatal dried blood spot samples) from 243 childhood medulloblastoma cases and 247 control subjects from Sweden and Denmark. Eight genetic variants annotating three genes in the sonic hedgehog signaling pathway; CCND2, PTCH1, and GLI2, were found to be associated with the risk of medulloblastoma (P (combined) < 0.05). The findings were however not statistically significant following correction for multiple testing by the very stringent Bonferroni method. The results do not support our hypothesis that common germline genetic variants in the ten studied genes are associated with the risk of developing medulloblastoma.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy