SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holmberg Erik) ;pers:(Holmberg Hans Christer 1958)"

Sökning: WFRF:(Holmberg Erik) > Holmberg Hans Christer 1958

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Andersson, Erik, et al. (författare)
  • Analysis of sprint cross-country skiing using a differential global navigation satellite system
  • 2010
  • Ingår i: European Journal of Applied Physiology. - : Springer Science and Business Media LLC. - 1439-6319 .- 1439-6327. ; 110:3, s. 585-595
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose was to examine skiing velocities, gear choice (G2-7) and cycle rates during a skating sprint time trial (STT) and their relationships to performance, as well as to examine relationships between aerobic power, body composition and maximal skiing velocity versus STT performance. Nine male elite cross-country skiers performed three tests on snow: (1) Maximum velocity test (Vmax) performed using G3 skating, (2) Vmax test performed using double poling (DP) technique and (3) a STT over 1,425 m. Additional measurements of VO2max during roller skiing and body composition using iDXA were made. Differential global navigation satellite system data were used for position and velocity and synchronized with video during STT. The STT encompassed a large velocity range (2.9-12.9 m s-1) and multiple transitions (21-34) between skiing gears. Skiing velocity in the uphill sections was related to gear selection between G2 and G3. STT performance was most strongly correlated to uphill time (r = 0.92, P < 0.05), the percentage use of G2 (r = -0.72, P < 0.05), and DP Vmax (r = -0.71, P < 0.05). The velocity decrease in the uphills from lap 1 to lap 2 was correlated with VO2max (r = -0.78, P < 0.05). Vmax in DP and G3 were related to percent of racing time using G3. In conclusion, the sprint skiing performance was mainly related to uphill performance, greater use of the G3 technique, and higher DP and G3 maximum velocities. Additionally, VO2max was related to the ability to maintain racing velocity in the uphills and lean body mass was related to starting velocity and DP maximal speed.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Gejl, Kasper D., et al. (författare)
  • Contractile Properties of MHC I and II Fibers From Highly Trained Arm and Leg Muscles of Cross-Country Skiers
  • 2021
  • Ingår i: Frontiers in Physiology. - : Frontiers Media S.A.. - 1664-042X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about potential differences in contractile properties of muscle fibers of the same type in arms and legs. Accordingly, the present study was designed to compare the force-generating capacity and Ca2+ sensitivity of fibers from arm and leg muscles of highly trained cross-country skiers. Method: Single muscle fibers of m. vastus lateralis and m. triceps brachii of 8 highly trained cross-country skiers were analyzed with respect to maximal Ca2+-activated force, specific force and Ca2+ sensitivity. Result: The maximal Ca2+-activated force was greater for MHC II than MHC I fibers in both the arm (+62 %, P < 0.001) and leg muscle (+77 %, P < 0.001), with no differences between limbs for each MHC isoform. In addition, the specific force of MHC II fibers was higher than that of MHC I fibers in both arms (+41 %, P = 0.002) and legs (+95 %, P < 0.001). The specific force of MHC II fibers was the same in both limbs, whereas MHC I fibers from the m. triceps brachii were, on average, 39% stronger than fibers of the same type from the m. vastus lateralis (P = 0.003). pCa50 was not different between MHC I and II fibers in neither arms nor legs, but the MHC I fibers of m. triceps brachii demonstrated higher Ca2+ sensitivity than fibers of the same type from m. vastus lateralis (P = 0.007). Conclusion: Comparison of muscles in limbs equally well trained revealed that MHC I fibers in the arm muscle exhibited a higher specific force-generating capacity and greater Ca2+ sensitivity than the same type of fiber in the leg, with no such difference in the case of MHC II fibers. These distinct differences in the properties of fibers of the same type in equally well-trained muscles open new perspectives in muscle physiology.
  •  
8.
  • Gejl, Kasper Degn, et al. (författare)
  • Effects of Acute Exercise and Training on the Sarcoplasmic Reticulum Ca(2+)Release and Uptake Rates in Highly Trained Endurance Athletes
  • 2020
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is presently known about the effects of acute high-intensity exercise or training on release and uptake of Ca(2+)by the sarcoplasmic reticulum (SR). The aims here were to characterize this regulation in highly trained athletes following (1) repeated bouts of high-intensity exercise and (2) a period of endurance training including high-intensity sessions. Eleven cross-country skiers (25 +/- 4 years, 65 +/- 4 mL O-2.kg(-1).min(-1)) performed four self-paced sprint time-trials (STT 1-4) lasting approximate to 4 min each (STT 1-4) and separated by 45 min of recovery; while 19 triathletes and road cyclists (25 +/- 4 years, 65 +/- 5 mL O-2.kg(-1).min(-1)) completed 4 weeks of endurance training in combination with three sessions of high-intensity interval cycling per week. Release (mu mol.g(-1)prot.min(-1)) and uptake [tau (s)] of Ca(2+)by SR vesicles isolated from m.triceps brachiiand m.vastus lateraliswere determined before and after STT 1 and 4 in the skiers and in m.vastus lateralisbefore and after the 4 weeks of training in the endurance athletes. The Ca(2+)release rate was reduced by 17-18% in both limbs already after STT 1 (arms: 2.52 +/- 0.74 to 2.08 +/- 0.60; legs: 2.41 +/- 0.45 to 1.98 +/- 0.51,P< 0.0001) and attenuated further following STT 4 (arms: 2.24 +/- 0.67 to 1.95 +/- 0.45; legs: 2.13 +/- 0.51 to 1.83 +/- 0.36,P< 0.0001). Also, there was a tendency toward an impairment in the SR Ca(2+)uptake from pre STT1 to post STT4 in both arms and legs (arms: from 22.0 +/- 3.7 s to 25.3 +/- 6.0 s; legs: from 22.5 +/- 4.7 s to 25.5 +/- 7.7 s,P= 0.05). Endurance training combined with high-intensity exercise increased the Ca(2+)release rate by 9% (1.76 +/- 0.38 to 1.91 +/- 0.44,P= 0.009), without altering the Ca(2+)uptake (29.6 +/- 7.0 to 29.1 +/- 8.7 s;P= 0.98). In conclusion, the Ca(2+)release and uptake rates by SR in exercising limbs of highly trained athletes declines gradually by repetitive bouts of high-intensity exercise. We also demonstrate, for the first time, that the SR Ca(2+)release rate can be enhanced by a specific program of training in highly trained athletes, which may have important implications for performance parameters.
  •  
9.
  •  
10.
  • Stöggl, Thomas, et al. (författare)
  • Automatic classification of the Sub-Techniques (Gears) used in cross-country ski skating employing a mobile phone
  • 2014
  • Ingår i: Sensors. - : MDPI AG. - 1424-8220. ; 14:11, s. 20589-20601
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of the current study was to develop and validate an automatic algorithm for classification of cross-country (XC) ski-skating gears (G) using Smartphone accelerometer data. Eleven XC skiers (seven men, four women) with regional-to-international levels of performance carried out roller skiing trials on a treadmill using fixed gears (G2left, G2right, G3, G4left, G4right) and a 950-m trial using different speeds and inclines, applying gears and sides as they normally would. Gear classification by the Smartphone (on the chest) and based on video recordings were compared. Formachine-learning, a collective database was compared to individual data. The Smartphone application identified the trials with fixed gears correctly in all cases. In the 950-m trial, participants executed 140 ± 22 cycles as assessed by video analysis, with the automatic Smartphone application giving a similar value. Based on collective data, gears were identified correctly 86.0% ± 8.9% of the time, a value that rose to 90.3% ± 4.1% (P < 0.01) with machine learning from individual data. Classification was most often incorrect during transition between gears, especially to or from G3. Identification was most often correct for skiers who made relatively few transitions between gears. The accuracy of the automatic procedure for identifying G2left, G2right, G3, G4left and G4right was 96%, 90%, 81%, 88% and 94%, respectively. The algorithm identified gears correctly 100% of the time when a single gear was used and 90% of the time when different gears were employed during a variable protocol. This algorithm could be improved with respect to identification of transitions between gears or the side employed within a given gear.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy