SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holmberg Erik) ;pers:(Wahlund Jan Erik)"

Sökning: WFRF:(Holmberg Erik) > Wahlund Jan Erik

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Edberg, Niklas J. T., et al. (författare)
  • Effects of Saturn's magnetospheric dynamics on Titan's ionosphere
  • 2015
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:10, s. 8884-8898
  • Tidskriftsartikel (refereegranskat)abstract
    • We use the Cassini Radio and Plasma Wave Science/Langmuir probe measurements of the electron density from the first 110 flybys of Titan to study how Saturn's magnetosphere influences Titan's ionosphere. The data is first corrected for biased sampling due to varying solar zenith angle and solar energy flux (solar cycle effects). We then present results showing that the electron density in Titan's ionosphere, in the altitude range 1600-2400km, is increased by about a factor of 2.5 when Titan is located on the nightside of Saturn (Saturn local time (SLT) 21-03h) compared to when on the dayside (SLT 09-15 h). For lower altitudes (1100-1600km) the main dividing factor for the ionospheric density is the ambient magnetospheric conditions. When Titan is located in the magnetospheric current sheet, the electron density in Titan's ionosphere is about a factor of 1.4 higher compared to when Titan is located in the magnetospheric lobes. The factor of 1.4 increase in between sheet and lobe flybys is interpreted as an effect of increased particle impact ionization from approximate to 200eV sheet electrons. The factor of 2.5 increase in electron density between flybys on Saturn's nightside and dayside is suggested to be an effect of the pressure balance between thermal plus magnetic pressure in Titan's ionosphere against the dynamic pressure and energetic particle pressure in Saturn's magnetosphere.
  •  
2.
  • Holmberg, M. K. G., et al. (författare)
  • Density Structures, Dynamics, and Seasonal and Solar Cycle Modulations of Saturn's Inner Plasma Disk
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:12, s. 12258-12273
  • Tidskriftsartikel (refereegranskat)abstract
    • We present statistical results from the Cassini Radio and Plasma Wave Science (RPWS) Langmuir probe measurements recorded during the time interval from orbit 3 (1 February 2005) to 237 (29 June 2016). A new and improved data analysis method to obtain ion density from the Cassini LP measurements is used to study the asymmetries and modulations found in the inner plasma disk of Saturn, between 2.5 and 12 Saturn radii (1 RS = 60, 268 km). The structure of Saturn's plasma disk is mapped, and the plasma density peak, n(max), is shown to be located at similar to 4.6 RS and not at the main neutral source region at 3.95 RS. The shift in the location of n(max) is due to that the hot electron impact ionization rate peaks at similar to 4.6 RS. Cassini RPWS plasma disk measurements show a solar cycle modulation. However, estimates of the change in ion density due to varying EUV flux is not large enough to describe the detected dependency, which implies that an additional mechanism, still unknown, is also affecting the plasma density in the studied region. We also present a dayside/nightside ion density asymmetry, with nightside densities up to a factor of 2 larger than on the dayside. The largest density difference is found in the radial region 4 to 5 RS. The dynamic variation in ion density increases toward Saturn, indicating an internal origin of the large density variability in the plasma disk rather than being caused by an external source origin in the outer magnetosphere.
  •  
3.
  • Holmberg, Mika, et al. (författare)
  • Transport and chemical loss rates in Saturn's inner plasma disk
  • 2016
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:3, s. 2321-2334
  • Tidskriftsartikel (refereegranskat)abstract
    • The Kronian moon Enceladus is constantly feeding its surrounding with new gas and dust, from cryovolcanoes located in its south polar region. Through photoionization and impact ionization of the neutrals a plasma disk is created, which mainly contains hydrogen ions H+ and water group ions W+. This paper investigates the importance of ion loss by outward radial transport and ion loss by dissociative recombination, which is the dominant chemical loss process in the inner plasma disk. We use plasma densities derived from several years of measurements by the Cassini Radio and Plasma Wave Science (RPWS) electric field spectrums and Langmuir probe (LP), to derive the total flux tube content NL2. Our calculation show that NL2 agrees well with earlier estimates within L shell 8. We also show that loss by transport dominates chemical loss in between L shell 2.5 and 10. The loss rate by transport is ∼5 times larger at 5 Saturn radii (1 RS = 60,268 km) and the difference is increasing as L7.7 for larger radial distances, for the total ion population. Chemical loss may still be important for the structure of the plasma disk in the region closest to Enceladus (∼±0.5 RS) at 3.95 RS, since the transport and chemical loss rates only differ by a factor of ∼2 in this region. We also derive the total plasma content of the plasma disk from L shell 4 to 10 to be 1.9×10^33 ions, and the total ion source rate for the same region to be 5.8×10^27 s^−1. The equatorial ion production rate P, ranges from 2.6×10^−5 cm^−3s^−1 (at L = 10) to 1.1×10^−4 cm^−3s^−1 (at L = 4.8). The net mass loading rate is derived to be 123 kg/s for L shell 4 to 10. 
  •  
4.
  • Shebanits, Oleg, et al. (författare)
  • Titan’s ionosphere : A survey of solar EUV influences
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 122:7, s. 7491-7503
  • Tidskriftsartikel (refereegranskat)abstract
    • Effects of solar EUV on positive ions and heavy negative charge carriers (molecular ions, aerosol, and/or dust) in Titan’s ionosphere are studied over the course of almost 12 years, including 78 flybys below 1400 km altitude between TA (October 2004) and T120 (June 2016). The Radio and Plasma Wave Science/Langmuir Probe-measured ion charge densities (normalized by the solar zenith angle) show statistically significant variations with respect to the solar EUV flux. Dayside charge densities increase by a factor of ≈2 from solar minimum to maximum, while nightside charge densities are found to anticorrelate with the EUV flux and decrease by a factor of ≈3–4. The overall EUV dependence of the ion charge densities suggest inapplicability of the idealized Chapman theory below 1200 km in Titan’s ionosphere. Nightside charge densities are also found to vary along Titan’s orbit, with higher values in the sunward magnetosphere of Saturn compared to the magnetotail.
  •  
5.
  • Garnier, P., et al. (författare)
  • Mapping 300 eV electrons at Saturn with the Cassini RPWS Langmuir probe
  • 2011
  • Ingår i: EPSC-DPS Joint Meeting 2011.
  • Konferensbidrag (refereegranskat)abstract
    • The Cassini Langmuir probe (onboard RPWS experiment) has provided wealth of information about the kronian cold plasma environment since the Saturn Orbit Insertion in 2004. The usage of the Langmuir probe is based on the fitting of the currentvoltage curve which brings information on several plasma parameters in cold and dense plasma regions. The ion part of the I-V curve may however be influenced by energetic particles hitting the probe, leading to an enhanced ion current measured. We report here the influence of 300 eV electrons on the probe current, with a current belt observed between Dione and Rhea.
  •  
6.
  • Garnier, P., et al. (författare)
  • The detection of energetic electrons with the Cassini Langmuir probe at Saturn
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. A10202-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cassini Langmuir probe, part of the Radio and Plasma Wave Science (RPWS) instrument, has provided a wealth of information about the cold and dense plasma in the Saturnian system. The analysis of the ion side current (current for negative potentials) measured by the probe from 2005 to 2008 reveals also a strong sensitivity to energetic electrons (250-450 eV). These electrons impact the surface of the probe, and generate a detectable current of secondary electrons. A broad secondary electrons current region is inferred from the observations in the dipole L Shell range of similar to 6-10, with a peak full width at half maximum (FWHM) at L = 6.4-9.4 (near the Dione and Rhea magnetic dipole L Shell values). This magnetospheric flux tube region, which displays a large day/night asymmetry, is related to the similar structure in the energetic electron fluxes as the one measured by the onboard Electron Spectrometer (ELS) of the Cassini Plasma Spectrometer (CAPS). It corresponds spatially to both the outer electron radiation belt observed by the Magnetosphere Imaging Instrument (MIMI) at high energies and to the low-energy peak which has been observed since the Voyager era. Finally, a case study suggests that the mapping of the current measured by the Langmuir probe for negative potentials can allow to identify the plasmapause-like boundary recently identified at Saturn, and thus potentially identify the separation between the closed and open magnetic field lines regions.
  •  
7.
  • Garnier, Philippe, et al. (författare)
  • The influence of the secondary electrons induced by energetic electrons impacting the Cassini Langmuir probe at Saturn
  • 2013
  • Ingår i: Journal of geophysical research Space Physics. - 2169-9402. ; 118:11, s. 7054-7073
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cassini Langmuir Probe (LP) onboard the Radio and Plasma Wave Science experiment has provided much information about the Saturnian cold plasma environment since the Saturn Orbit Insertion in 2004. A recent analysis revealed that the LP is also sensitive to the energetic electrons (250–450 eV) for negative potentials. These electrons impact the surface of the probe and generate a current of secondary electrons, inducing an energetic contribution to the DC level of the current-voltage (I-V) curve measured by the LP. In this paper, we further investigated this influence of the energetic electrons and (1) showed how the secondary electrons impact not only the DC level but also the slope of the (I-V) curve with unexpected positive values of the slope, (2) explained how the slope of the (I-V) curve can be used to identify where the influence of the energetic electrons is strong, (3) showed that this influence may be interpreted in terms of the critical and anticritical temperatures concept detailed by Lai and Tautz (2008), thus providing the first observational evidence for the existence of the anticritical temperature, (4) derived estimations of the maximum secondary yield value for the LP surface without using laboratory measurements, and (5) showed how to model the energetic contributions to the DC level and slope of the (I-V) curve via several methods (empirically and theoretically). This work will allow, for the whole Cassini mission, to clean the measurements influenced by such electrons. Furthermore, the understanding of this influence may be used for other missions using Langmuir probes, such as the future missions Jupiter Icy Moons Explorer at Jupiter, BepiColombo at Mercury, Rosetta at the comet Churyumov-Gerasimenko, and even the probes onboard spacecrafts in the Earth magnetosphere.
  •  
8.
  • Holmberg, Mika, 1982- (författare)
  • A study of the structure and dynamics of Saturn's inner plasma disk
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis presents a study of the inner plasma disk of Saturn. The results are derived from measurements by the instruments on board the Cassini spacecraft, mainly the Cassini Langmuir probe (LP), which has been in orbit around Saturn since 2004. One of the great discoveries of the Cassini spacecraft is that the Saturnian moon Enceladus, located at 3.95 Saturn radii (1 RS = 60,268 km), constantly expels water vapor and condensed water from ridges and troughs located in its south polar region. Impact ionization and photoionization of the water molecules, and subsequent transport, creates a plasma disk around the orbit of Enceladus. The plasma disk ion components are mainly hydrogen ions H+ and water group ions W+ (O+, OH+, H2O+, and H3O+). The Cassini LP is used to measure the properties of the plasma. A new method to derive ion density and ion velocity from Langmuir probe measurements has been developed. The estimated LP statistics are used to derive the extension of the plasma disk, which show plasma densities above ~20 cm-3 in between 2.7 and 8.8 RS. The densities also show a very variable plasma disk, varying with one order of magnitude at the inner part of the disk. We show that the density variation could partly be explained by a dayside/nightside asymmetry in both equatorial ion densities and azimuthal ion velocities. The asymmetry is suggested to be due to the particle orbits being shifted towards the Sun that in turn would cause the whole plasma disk to be shifted. We also investigate the ion loss processes of the inner plasma disk and conclude that loss by transport dominates loss by recombination in the entire region. However, loss by recombination is still important in the region closest to Enceladus (~±0.5 RS) where it differs with only a factor of two from ion transport loss. 
  •  
9.
  • Holmberg, Mika, et al. (författare)
  • Dayside/nightside asymmetry of ion densities and velocities in Saturn's inner magnetosphere
  • 2014
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 41:11, s. 3717-3723
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Radio and Plasma Wave Science Langmuir probe measurements from 129 Cassini orbits, which show a day/night asymmetry in both ion density and ion velocity in the radial region 4–6 RS (1 RS = 60,268 km) from the center of Saturn. The ion densities ni vary from an average of ∼35 cm−3 around noon up to ∼70 cm−3 around midnight. The ion velocities vi,θ vary from ∼28–32 km/s at the lowest dayside values to ∼36–40 km/s at the highest nightside values. The day/night asymmetry is suggested to be due to the radiation pressure force acting on negatively charged nanometer-sized dust of the E ring. This force will introduce an extra grain and ion drift component equivalent to the force of an additional electric field of 0.1–2 mV/m for 10–50 nm sized grains.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy