SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holmberg Lars) ;pers:(Holmberg Hans Christer 1958)"

Sökning: WFRF:(Holmberg Lars) > Holmberg Hans Christer 1958

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Carlsson, Lars, et al. (författare)
  • Enhanced systolic myocardial function in elite endurance athletes during combined arm-and-leg exercise
  • 2011
  • Ingår i: European Journal of Applied Physiology. - : Springer Science and Business Media LLC. - 1439-6319 .- 1439-6327. ; 111:6, s. 905-913
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim here was to employ color tissue velocity imaging (TVI), to test the hypothesis that highly trained endurance athletes exhibit enhanced systolic function of the left ventricular (LV) myocardium both at rest and during combined arm-and-leg exercise in comparison with untrained subjects. For each of the ten elite male (EG) and ten matched control participants (CG), LV dimensions and systolic function were assessed at rest using echocardiography. Subsequently, these subjects exercised continuously on a combined arm-and-leg cycle ergometer for 3 min each at 50, 60, 70, 80, 90 and 100% of VO2max. Oxygen uptake, heart rate, systolic blood pressure (SBP) and peak contraction systolic velocities of the LV myocardium (PSV) were recorded in the end of each level. At rest, the trained and untrained groups differed with respect to LV dimensions, but not systolic function. At 60–100% VO2max, the EG group demonstrated both higher PSV and SBP. The observation that the EG athletes had higher PSV than CG during exercise at 60–100% VO2max, but not at rest or at 50% of VO2max, suggested an enhanced systolic capacity. This improvement is likely to be due to an enhanced inotropic contractility, which only becomes apparent during exercise.
  •  
3.
  •  
4.
  • Gejl, Kasper D., et al. (författare)
  • Changes in metabolism but not myocellular signaling by training with CHO-restriction in endurance athletes
  • 2018
  • Ingår i: Physiological Reports. - : Wiley. - 2051-817X. ; 6:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbohydrate (CHO) restricted training has been shown to increase the acute training response, whereas less is known about the acute effects after repeated CHO restricted training. On two occasions, the acute responses to CHO restriction were examined in endurance athletes. Study 1 examined cellular signaling and metabolic responses after seven training-days including CHO manipulation (n = 16). The protocol consisted of 1 h high-intensity cycling, followed by 7 h recovery, and 2 h of moderate-intensity exercise (120SS). Athletes were randomly assigned to low (LCHO: 80 g) or high (HCHO: 415 g) CHO during recovery and the 120SS. Study 2 examined unaccustomed exposure to the same training protocol (n = 12). In Study 1, muscle biopsies were obtained at rest and 1 h after 120SS, and blood samples drawn during the 120SS. In Study 2, substrate oxidation and plasma glucagon were determined. In Study 1, plasma insulin and proinsulin C-peptide were higher during the 120SS in HCHO compared to LCHO (insulin: 0 min: +37%; 60 min: +135%; 120 min: +357%, P = 0.05; proinsulin C-peptide: 0 min: +32%; 60 min: +52%; 120 min: +79%, P = 0.02), whereas plasma cholesterol was higher in LCHO (+15-17%, P = 0.03). Myocellular signaling did not differ between groups. p-AMPK and p-ACC were increased after 120SS (+35%, P = 0.03; +59%, P = 0.0004, respectively), with no alterations in p-p38, p-53, or p-CREB. In Study 2, glucagon and fat oxidation were higher in LCHO compared to HCHO during the 120SS (+26-40%, P = 0.03; +44-76%, P = 0.01 respectively). In conclusion, the clear respiratory and hematological effects of CHO restricted training were not translated into superior myocellular signaling after accustomization to CHO restriction.
  •  
5.
  • Gejl, Kasper D., et al. (författare)
  • Contractile Properties of MHC I and II Fibers From Highly Trained Arm and Leg Muscles of Cross-Country Skiers
  • 2021
  • Ingår i: Frontiers in Physiology. - : Frontiers Media S.A.. - 1664-042X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about potential differences in contractile properties of muscle fibers of the same type in arms and legs. Accordingly, the present study was designed to compare the force-generating capacity and Ca2+ sensitivity of fibers from arm and leg muscles of highly trained cross-country skiers. Method: Single muscle fibers of m. vastus lateralis and m. triceps brachii of 8 highly trained cross-country skiers were analyzed with respect to maximal Ca2+-activated force, specific force and Ca2+ sensitivity. Result: The maximal Ca2+-activated force was greater for MHC II than MHC I fibers in both the arm (+62 %, P < 0.001) and leg muscle (+77 %, P < 0.001), with no differences between limbs for each MHC isoform. In addition, the specific force of MHC II fibers was higher than that of MHC I fibers in both arms (+41 %, P = 0.002) and legs (+95 %, P < 0.001). The specific force of MHC II fibers was the same in both limbs, whereas MHC I fibers from the m. triceps brachii were, on average, 39% stronger than fibers of the same type from the m. vastus lateralis (P = 0.003). pCa50 was not different between MHC I and II fibers in neither arms nor legs, but the MHC I fibers of m. triceps brachii demonstrated higher Ca2+ sensitivity than fibers of the same type from m. vastus lateralis (P = 0.007). Conclusion: Comparison of muscles in limbs equally well trained revealed that MHC I fibers in the arm muscle exhibited a higher specific force-generating capacity and greater Ca2+ sensitivity than the same type of fiber in the leg, with no such difference in the case of MHC II fibers. These distinct differences in the properties of fibers of the same type in equally well-trained muscles open new perspectives in muscle physiology.
  •  
6.
  • Gejl, Kasper Degn, et al. (författare)
  • No Superior Adaptations to Carbohydrate Periodization in Elite Endurance Athletes
  • 2017
  • Ingår i: Medicine & Science in Sports & Exercise. - 0195-9131 .- 1530-0315. ; 49:12, s. 2486-2497
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose The present study investigated the effects of periodic carbohydrate (CHO) restriction on endurance performance and metabolic markers in elite endurance athletes. Methods Twenty-six male elite endurance athletes (maximal oxygen consumption (VO2max), 65.0 mL O(2)kg(-1)min(-1)) completed 4 wk of regular endurance training while being matched and randomized into two groups training with (low) or without (high) CHO manipulation 3 dwk(-1). The CHO manipulation days consisted of a 1-h high-intensity bike session in the morning, recovery for 7 h while consuming isocaloric diets containing either high CHO (414 2.4 g) or low CHO (79.5 1.0 g), and a 2-h moderate bike session in the afternoon with or without CHO. VO2max, maximal fat oxidation, and power output during a 30-min time trial (TT) were determined before and after the training period. The TT was undertaken after 90 min of intermittent exercise with CHO provision before the training period and both CHO and placebo after the training period. Muscle biopsies were analyzed for glycogen, citrate synthase (CS) and -hydroxyacyl-coenzyme A dehydrogenase (HAD) activity, carnitine palmitoyltransferase (CPT1b), and phosphorylated acetyl-CoA carboxylase (pACC). Results The training effects were similar in both groups for all parameters. On average, VO2max and power output during the 30-min TT increased by 5% +/- 1% (P < 0.05) and TT performance was similar after CHO and placebo during the preload phase. Training promoted overall increases in glycogen content (18% +/- 5%), CS activity (11% +/- 5%), and pACC (38% +/- 19%; P < 0.05) with no differences between groups. HAD activity and CPT1b protein content remained unchanged. Conclusions Superimposing periodic CHO restriction to 4 wk of regular endurance training had no superior effects on performance and muscle adaptations in elite endurance athletes.
  •  
7.
  •  
8.
  •  
9.
  • Jonsson, Malin, et al. (författare)
  • Biomechanical differences in double poling (DP) for world- and national-class female elite cross-country (XC) skiers during a 10-km classical race
  • 2016
  • Ingår i: Proceedings ICSS in St. Christoph am Arlberg, Austria.
  • Konferensbidrag (refereegranskat)abstract
    • Introduction The DP technique of classical XC-skiing involves both the upper and lower body (Holmberg et al.,2005) and has become more important the last years with skiers using exclusively DP during some competitions. Our purpose was to characterize biomechanical differences in DP by world- (WC) and national-class (NC) women skiers. Methods The participants were 40 elite female XC skiers (20 WC and 20 NC) who competed in the 10-km classical race at the Norwegian National Championships, 2016. On a flat measurement section (22 m long) 0.8 km from the start, the skiers employed DP only and were video-filmed (Panasonic GH4, 96 Hz). Three DP cycles were analyzed using the Kinovea software (France, v 8.25) for joint and pole angles at pole plant (PP) and pole off (PO), as well as cycle length (CL) and rate (CR), and poling (PT) and swing times (ST). Results The total racing time for the WC-group was 10.5% faster than for the NC-skiers, with no differences in CL, CR, PT or ST. The WC-group skied faster on the flat section (6.30±0.23 vs 6.04±0.25 m/s) and exhibited a smaller ankle-shoulder angle relative to horizontal at PP (73.0±1.8 vs 75.0±1.5°) and a smaller hip angle at PO (62.7±5.2 vs 69.1±6.4°) with no difference in minimal trunk angle with respect to horizontal (19.2±3.2 vs 21.7±4.8°). 27 of the skiers (15 WC and 12 NC) used active heel raise to create force. There was a difference between the groups for when the heel raise ended, with the NC-group stopping just before PP and the WC-group after. No difference between the groups were found for when the heel raise started . There was a negative correlation between DP velocity and total racing time (r = -0.48, p<0.05) and a positive correlation between total racing time and the ankle-shoulder angle relative to horizontal at PP (r = 0.54, p<0.01), the hip angle at PO (r = 0.51, p<0.01) and minimal trunk angle relative to horizontal during the cycles (r = 0.41, p<0.01). Discussion The WC-group had 4.1% higher DP velocity which correlated with total racing time. Moreover, the finding that faster skiers have a more forward lean of the body at PP and a better timing of the ending of the heel raise, indicates that they can bring more bodyweight on their poles at PP. The WC-group had a smaller hip angle at PO which is in line with the findings of Lindinger et al.(2009). This study shows the importance of a high relative velocity during DP sections of the track and highlights the benefit of a more forward body position at PP to create higher DP velocity in female XC skiers. References Holmberg, H.C., Lindinger, S., Stöggl, T., Eitzlmair, E. & Müller, E. (2005). Biomechanical analysis of double poling in elite cross-country skiers. Med Sci Sports Exerc, 37(5), 807-818 Lindinger, S., Stöggl, T., Müller, E. & Holmberg, H.C. (2009). Control of speed during the double poling technique performed by elite cross-country skiers. Med Sci Sports Exerc, 41(1), 210-220
  •  
10.
  • Karlöf, Lars, et al. (författare)
  • Snow - the performance surface for alpine skiing
  • 2013
  • Ingår i: Routledge Handbook of Ergonomics in Sport and Exercise. - Oxon and New York : Routledge. - 9781138657106 ; , s. 323-334
  • Bokkapitel (refereegranskat)abstract
    • Alpine skiing is a popular winter sport. Athletes use their equipment on different courses that are covered with snow. From this perspective, better knowledge of snow conditions and the interaction between the skis and snow is fundamental, because performance and choices between different techniques are related to the interaction beteeen the athlete, the ski eqiuipment and the snow.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy