SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holmström Mats) ;pers:(Fatemi Shahab)"

Sökning: WFRF:(Holmström Mats) > Fatemi Shahab

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Behar, Etienne, et al. (författare)
  • Menura : A code for simulating the interaction between a turbulent solar wind and solar system bodies
  • 2022
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 40:3, s. 281-297
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the close relationship between planetary science and plasma physics, few advanced numerical tools allow bridging the two topics. The code Menura proposes a breakthrough towards the self-consistent modelling of these overlapping fields, in a novel two-step approach allowing for the global simulation of the interaction between a fully turbulent solar wind and various bodies of the solar system. This article introduces the new code and its two-step global algorithm, illustrated by a first example: the interaction between a turbulent solar wind and a comet.
  •  
2.
  • Farrell, William M., et al. (författare)
  • The dust, atmosphere, and plasma at the moon
  • 2024
  • Ingår i: Reviews in Mineralogy and Geochemistry, Mineralogical Society of America. - : Walter de Gruyter. - 1529-6466 .- 1943-2666. ; 89, s. 563-609
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Fatemi, Shahab, et al. (författare)
  • A modelling approach to infer the solar wind dynamic pressure from magnetic field observations inside Mercury's magnetosphere
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 614
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: The lack of an upstream solar wind plasma monitor when a spacecraft is inside the highly dynamic magnetosphere of Mercury limits interpretations of observed magnetospheric phenomena and their correlations with upstream solar wind variations.Methods: We used AMITIS, a three-dimensional GPU-based hybrid model of plasma (particle ions and fluid electrons) to infer the solar wind dynamic pressure and Alfvén Mach number upstream of Mercury by comparing our simulation results with MESSENGER magnetic field observations inside the magnetosphere of Mercury. We selected a few orbits of MESSENGER that have been analysed and compared with hybrid simulations before. Then we ran a number of simulations for each orbit (~30–50 runs) and examined the effects of the upstream solar wind plasma variations on the magnetic fields observed along the trajectory of MESSENGER to find the best agreement between our simulations and observations.Results: We show that, on average, the solar wind dynamic pressure for the selected orbits is slightly lower than the typical estimated dynamic pressure near the orbit of Mercury. However, we show that there is a good agreement between our hybrid simulation results and MESSENGER observations for our estimated solar wind parameters. We also compare the solar wind dynamic pressure inferred from our model with those predicted previously by the WSA-ENLIL model upstream of Mercury, and discuss the agreements and disagreements between the two model predictions. We show that the magnetosphere of Mercury is highly dynamic and controlled by the solar wind plasma and interplanetary magnetic field. In addition, in agreement with previous observations, our simulations show that there are quasi-trapped particles and a partial ring current-like structure in the nightside magnetosphere of Mercury, more evident during a northward interplanetary magnetic field (IMF). We also use our simulations to examine the correlation between the solar wind dynamic pressure and stand-off distance of the magnetopause and compare it with MESSENGER observations. We show that our model results are in good agreement with the response of the magnetopause to the solar wind dynamic pressure, even during extreme solar events. We also show that our model can be used as a virtual solar wind monitor near the orbit of Mercury and this has important implications for interpretation of observations by MESSENGER and the future ESA/JAXA mission to Mercury, BepiColombo.
  •  
4.
  • Fatemi, Shahab, et al. (författare)
  • Effects of protons deflected by lunar crustal magnetic fields on the global lunar plasma environment
  • 2014
  • Ingår i: Journal of Geophysical Research - Space Physics. - : John Wiley & Sons. - 2169-9380 .- 2169-9402. ; 119:8, s. 6095-6105
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar wind plasma interaction with lunar crustal magnetic fields is different than that of magnetized bodies like the Earth. Lunar crustal fields are, for typical solar wind conditions, not strong enough to form a (bow)shock upstream but rather deflect and perturb plasma and fields. Here we study the global effects of protons reflected from lunar crustal magnetic fields on the lunar plasma environment when the Moon is in the unperturbed solar wind. We employ a three-dimensional hybrid model of plasma and an observed map of reflected protons from lunar magnetic anomalies over the lunar farside. We observe that magnetic fields and plasma upstream over the lunar crustal fields compress to nearly 120% and 160% of the solar wind, respectively. We find that these disturbances convect downstream in the vicinity of the lunar wake, while their relative magnitudes decrease. In addition, solar wind protons are disturbed and heated at compression regions and their velocity distribution changes from Maxwellian to a non-Maxwellian. Finally, we show that these features persists, independent of the details of the ion reflection by the magnetic fields.
  •  
5.
  • Fatemi, Shahab, et al. (författare)
  • The effects of lunar surface plasma absorption and solar wind temperature anisotropies on the solar wind proton velocity space distributions in the low-altitude lunar plasma wake
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the solar wind proton velocity space distribution functions on the lunar nightside at low altitudes (∼100 km) above the lunar surface using a three-dimensional hybrid plasma solver, when the Moon is in the unperturbed solar wind. When the solar wind encounters a passive obstacle, such as the Moon, without any strong magnetic field and no atmosphere, solar wind protons that impact the obstacle's surface are absorbed and removed from the velocity space distribution functions. We show first that a hybrid model of plasma is applicable to study the low-altitude lunar plasma wake by comparing the simulation results with observations. Then we examine the effects of a solar wind bi-Maxwellian velocity space distribution function and the lunar surface plasma absorption on the solar wind protons' velocity space distribution functions and their entry in the direction parallel to the interplanetary magnetic field lines into the low-altitude lunar wake. We present a backward Liouville method for particle-in-cell solvers that improves velocity space resolution. The results show that the lunar surface plasma absorption and anisotropic solar wind velocity space distributions result in substantial changes in the solar wind proton distribution functions in the low-altitude lunar plasma wake, modifying proton number density, velocity, and temperature there. Additionally, a large temperature anisotropy is found at close distances to the Moon on the lunar nightside as a consequence of the lunar surface plasma absorption effect
  •  
6.
  • Fatemi, Shahab, et al. (författare)
  • The lunar wake current systems
  • 2013
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 40:1, s. 17-21
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the lunar wake current systems when the Moon is assumed to be a non-conductive body, absorbing the solar wind plasma. We show that in the transition regions between the plasma void, the expanding rarefaction region, and the interplanetary plasma, there are three main currents flowing around these regions in the lunar wake. The generated currents induce magnetic fields within these regions and perturb the field lines there. We use a three-dimensional, self-consistent hybrid model of plasma (particle ions and fluid electrons) to show the flow of these three currents. First, we identify the different plasma regions, separated by the currents, and then we show how the currents depend on the interplanetary magnetic field direction. Finally, we discuss the current closures in the lunar wake.
  •  
7.
  • Holmström, Mats, et al. (författare)
  • The interaction between the Moon and the solar wind
  • 2012
  • Ingår i: Earth Planets and Space. - : Springer Science and Business Media LLC. - 1343-8832 .- 1880-5981. ; 64:2, s. 237-245
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the interaction between the Moon and the solar wind using a three-dimensional hybrid plasma solver. The proton fluxes and electromagnetical fields are presented for typical solar wind conditions with different magnetic field directions. We find two different wake structures for an interplanetary magnetic field that is perpendicular to the solar wind flow, and for one that is parallell to the flow. The wake for intermediate magnetic field directions will be a mix of these two extreme conditions. Several features are consistent with a fluid interaction, e.g., the presence of a rarefaction cone, and an increased magnetic field in the wake. There are however several kinetic features of the interaction. We find kinks in the magnetic field at the wake boundary. There are also density and magnetic field variations in the far wake, maybe from an ion beam instability related to the wake refill. The results are compared to observations by the WIND spacecraft during a wake crossing. The model magnetic field and ion velocities are in agreement with the measurements. The density and the electron temperature in the central wake are not as well captured by the model, probably from the lack of electron physics in the hybrid model.
  •  
8.
  • Khurana, Krishan K., et al. (författare)
  • The role of plasma slowdown in the generation of Rhea's Alfvén wings
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 122:2, s. 1778-1788
  • Tidskriftsartikel (refereegranskat)abstract
    • Alfvén wings are known to form when a conducting or mass-loading object slows down a flowing plasma in its vicinity. Alfvén wings are not expected to be generated when an inert moon such as Rhea interacts with Saturn's magnetosphere, where the plasma impacting the moon is absorbed and the magnetic flux passes unimpeded through the moon. However, in two close polar passes of Rhea, Cassini clearly observed magnetic field signatures consistent with Alfvén wings. In addition, observations from a high-inclination flyby (Distance > 100 R Rh ) of Rhea on 3 June 2010 showed that the Alfvén wings continue to propagate away from Rhea even at this large distance. We have performed three-dimensional hybrid simulations of Rhea's interaction with Saturn's magnetosphere which show that the wake refilling process generates a plasma density gradient directed in the direction of corotating plasma. The resulting plasma pressure gradient exerts a force directed toward Rhea and slows down the plasma streaming into the wake along field lines. As on the same field lines, outside of the wake, the plasma continues to move close to its full speed, this differential motion of plasma bends the magnetic flux tubes, generating Alfvén wings in the wake. The current system excited by the Alfvén wings transfers momentum to the wake plasma extracting it from plasma outside the wake. Our work demonstrates that Alfvén wings can be excited even when a moon does not possess a conducting exosphere.
  •  
9.
  • Lindkvist, Jesper, et al. (författare)
  • Callisto plasma interactions : Hybrid modeling including induction by a subsurface ocean
  • 2015
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:6, s. 4877-4889
  • Tidskriftsartikel (refereegranskat)abstract
    • By using a hybrid plasma solver (ions as particles and electrons as a fluid), we have modeled the interaction between Callisto and Jupiter's magnetosphere for variable ambient plasma parameters. We compared the results with the magnetometer data from flybys (C3, C9, and C10) by the Galileo spacecraft. Modeling the interaction between Callisto and Jupiter's magnetosphere is important to establish the origin of the magnetic field perturbations observed by Galileo and thought to be related to a subsurface ocean. Using typical upstream magnetospheric plasma parameters and a magnetic dipole corresponding to the inductive response inside the moon, we show that the model results agree well with observations for the C3 and C9 flybys, but agrees poorly with the C10 flyby close to Callisto. The study does support the existence of a subsurface ocean at Callisto.
  •  
10.
  • Lindkvist, Jesper, 1986-, et al. (författare)
  • Ceres interaction with the solar wind
  • 2017
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 44:5, s. 2070-2077
  • Tidskriftsartikel (refereegranskat)abstract
    • The solar wind interaction with Ceres is studied for a high water vapor release from its surface using a hybrid model including photoionization. We use a water vapor production rate of 6 kg/s, thought to be due to subsurface sublimation, corresponding to a detection on 6 March 2013 by the Herschel Space Observatory. We present the general morphology of the plasma interactions, both close to Ceres and on a larger scale. Mass loading of water ions causes a magnetic pileup region in front of Ceres, where the solar wind deflects up to 15 ∘ and slows down by 15%. The global plasma interaction with Ceres is not greatly affected by the source location of water vapor nor on gravity, only on the production rate of water vapor. On a global scale, Ceres has a comet-like interaction with the solar wind with observable perturbations farther than 250 Ceres radii downstream of the body.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy