Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holst Jutta) "

Sökning: WFRF:(Holst Jutta)

  • Resultat 1-10 av 19
  • [1]2Nästa
Sortera/gruppera träfflistan
  • Holst, Thomas, et al. (författare)
  • Net radiation balance for two forested slopes on opposite sides
  • 2005
  • Ingår i: International Journal of Biometeorology. - : Springer. - 1432-1254. ; 49, s. 275-284
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of the net radiation balance of two forested sites on the opposite slopes of a valley in south-western Germany, made over 3 years, are presented in this study. Radiation sensors were mounted horizontally on two measurement towers above two beech stands. The direct part of the measured short-wave incoming radiation was adjusted according to the slope’s angle to convert horizontally measured radiation data into surface-parallel radiation fluxes. During periods when contemporaneous measurements of slope-parallel and horizontal radiation fluxes were available, the calculation of surface-parallel radiation fluxes from the horizontally recorded net radiation components were compared with measured values. The net radiative fluxes parallel to the slopes were calculated for a period of 36 months and analysed. Results show that the different aspects of both sites cause significant differences of the net radiation balance. In June, when the elevation of the sun is highest, incoming solar radiation K¯ received on the NE-slope was 9% lower than K¯ received on the SW-slope. During the winter months, the differences were much greater and incoming solar radiation to the NE-slope was 50% of that to the SW-slope. Due to the differing solar irradiance, net radiation fluxes were significantly higher on the SW-slope than on the NE-slope. For long-wave radiation only small differences between both slopes could be found. Since radiative fluxes determine the energy balance and hence the microclimate and water balance of a forest stand, these differences in the net radiation balance between the slopes are important for the vegetation.
  • Holst, Jutta, et al. (författare)
  • Effect of meteorological exchange conditions on PM10 concentration
  • 2008
  • Ingår i: Meteorologische Zeitschrift. - : E Schweizerbartsche Verlags. - 1610-1227. ; 17:3, s. 273-282
  • Tidskriftsartikel (refereegranskat)abstract
    • The short-term limit value for PM10 having become effective in January 2005 was exceeded in many regions within the EU in 2005 and 2006. Therefore, strategies, particularly with respect to traffic control, are discussed, which could cause reduced PM10 concentrations leading to a more effective compliance with the short-term PM10 limit value. These strategies are often justified on PM10 differences between a roadside and an adjacent urban background station. As PM10 is a complex mixture of species originating from different sources, the working hypothesis has been posted that the meteorological exchange conditions strongly affect the PM10 concentration. Therefore, the role of the meteorological exchange conditions with respect to different PM10 patterns, like cycles and PM10 episodes, was investigated on the basis of mean daily PM10 values from air pollution monitoring stations in Baden-Wurttemberg (SW Germany) in the period January 2001 to February 2006. To characterise the meteorological exchange conditions in a spatial resolution, different meteorological variables were used. Partly, they are directly measured at the air pollution monitoring stations or, as for the height of the mixing-layer (MLH) and the stagnation index (SI), they were derived from results of the local model (LM) of the German Weather Service. For periods without precipitation, the results show a statistically significant relationship between PM10 and MLH as well as SI. PM10 increased with decreasing MLH and increasing SI. During periods with precipitation, these relationships were very weak and had no statistical significance. The analysis of the influence of precipitation performed on a daily basis revealed a distinct reduction of PM10 on the first day with precipitation after a period without precipitation. On following days without precipitation, PM10 increased again. Characteristic of the PM10 episodes analysed were remarkably reduced meteorological exchange conditions described by MLH, near-surface wind speed and precipitation. As a case study, two extreme PM10 episodes in January/February 2006 were investigated in detail. As expected, the station-specific variability of the mean daily PM10 values correlated well with daily values of MLH and SI reflecting the pattern of the regional meteorological exchange conditions. Altogether, all results of this investigation point out the main significance of the meteorological exchange conditions on the PM10 level, which is particularly dominant during PM10 episodes.
  • Lindroth, A., et al. (författare)
  • Effects of drought and meteorological forcing on carbon and water fluxes in Nordic forests during the dry summer of 2018
  • 2020
  • Ingår i: Philosophical Transactions of the Royal Society B-Biological Sciences. - : Royal Society. - 0962-8436 .- 1471-2970. ; 375:1810
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nordic region was subjected to severe drought in 2018 with a particularly long-lasting and large soil water deficit in Denmark, Southern Sweden and Estonia. Here, we analyse the impact of the drought on carbon and water fluxes in 11 forest ecosystems of different composition: spruce, pine, mixed and deciduous. We assess the impact of drought on fluxes by estimating the difference (anomaly) between year 2018 and a reference year without drought. Unexpectedly, the evaporation was only slightly reduced during 2018 compared to the reference year at two sites while it increased or was nearly unchanged at all other sites. This occurred under a 40 to 60% reduction in mean surface conductance and the concurrent increase in evaporative demand due to the warm and dry weather. The anomaly in the net ecosystem productivity (NEP) was 93% explained by a multilinear regression with the anomaly in heterotrophic respiration and the relative precipitation deficit as independent variables. Most of the variation (77%) was explained by the heterotrophic component. Six out of 11 forests reduced their annual NEP with more than 50 g C m(-2)yr(-1)during 2018 as compared to the reference year. The NEP anomaly ranged between -389 and +74 g C m(-2)yr(-1)with a median value of -59 g C m(-2)yr(-1). This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
  • Podgrajsek, Eva, et al. (författare)
  • Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes
  • 2014
  • Ingår i: Biogeosciences Discussions. - : European Geosciences Union (EGU) / Copernicus Publications. - 1810-6277 .- 1810-6285. ; 11:15, s. 4225-4233
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluxes of carbon dioxide (CO2) and methane (CH4) from lakes may have a large impact on the magnitude of the terrestrial carbon sink. Traditionally lake fluxes have been measured using the floating chamber (FC) technique; however, several recent studies use the eddy covariance (EC) method. We present simultaneous flux measurements using both methods at lake Tämnaren in Sweden during field campaigns in 2011 and 2012. Only very few similar studies exist. For CO2 flux, the two methods agree relatively well during some periods, but deviate substantially at other times. The large discrepancies might be caused by heterogeneity of partial pressure of CO2 (pCO2w) in the EC flux footprint. The methods agree better for CH4 fluxes. It is, however, clear that short-term discontinuous FC measurements are likely to miss important high flux events.
  • Vestin, P., et al. (författare)
  • Impacts of Clear-Cutting of a Boreal Forest on Carbon Dioxide, Methane and Nitrous Oxide Fluxes
  • 2020
  • Ingår i: Forests. - : MDPI AG. - 1999-4907. ; 11:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2015 Paris Agreement encourages stakeholders to implement sustainable forest management policies to mitigate anthropogenic emissions of greenhouse gases (GHG). The net effects of forest management on the climate and the environment are, however, still not completely understood, partially as a result of a lack of long-term measurements of GHG fluxes in managed forests. During the period 2010-2013, we simultaneously measured carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes using the flux-gradient technique at two clear-cut plots of different degrees of wetness, located in central Sweden. The measurements started approx. one year after clear-cutting, directly following soil scarification and planting. The study focused on robust inter-plot comparisons, spatial and temporal dynamics of GHG fluxes, and the determination of the global warming potential of a clear-cut boreal forest. The clear-cutting resulted in significant emissions of GHGs at both the wet and the dry plot. The degree of wetness determined, directly or indirectly, the relative contribution of each GHG to the total budgets. Faster establishment of vegetation on the wet plot reduced total emissions of CO2 as compared to the dry plot but this was partially offset by higher CH4 emissions. Waterlogging following clear-cutting likely caused both plots to switch from sinks to sources of CH4. In addition, there were periods with N2O uptake at the wet plot, although both plots were net sources of N2O on an annual basis. We observed clear diel patters in CO2, CH4 and N2O fluxes during the growing season at both plots, with the exception of CH4 at the dry plot. The total three-year carbon budgets were 4107 gCO(2)-equivalent m(-2) and 5274 gCO(2)-equivalent m(-2) at the wet and the dry plots, respectively. CO2 contributed 91.8% to the total carbon budget at the wet plot and 98.2% at the dry plot. For the only full year with N2O measurements, the total GHG budgets were 1069.9 gCO(2)-eqvivalents m(-2) and 1695.7 gCO(2)-eqvivalents m(-2) at the wet and dry plot, respectively. At the wet plot, CH4 contributed 3.7%, while N2O contributed 7.3%. At the dry plot, CH4 and N2O contributed 1.5% and 7.6%, respectively. Our results emphasize the importance of considering the effects of the three GHGs on the climate for any forest management policy aiming at enhancing the mitigation potential of forests.
  • Ahlberg, Erik, et al. (författare)
  • "Vi klimatforskare stödjer Greta och skolungdomarna"
  • Ingår i: Dagens nyheter (DN debatt). - 1101-2447.
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • DN DEBATT 15/3. Sedan industrialiseringens början har vi använt omkring fyra femtedelar av den mängd fossilt kol som får förbrännas för att vi ska klara Parisavtalet. Vi har bara en femtedel kvar och det är bråttom att kraftigt reducera utsläppen. Det har Greta Thunberg och de strejkande ungdomarna förstått. Därför stödjer vi deras krav, skriver 270 klimatforskare.
  • Hentschel, Rainer, et al. (författare)
  • Simulation of stand transpiration based on a xylem water flow model for individual trees
  • 2013
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier. - 1873-2240. ; 182, s. 31-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantifying the water exchange between a forest stand and the atmosphere is of major interest for the prediction of future growth conditions and the planning of silvicultural treatments. In the present study, we address (i) the uncertainties of sap flow estimations at the tree level and (ii) the performance of the simulation of stand transpiration. Terrestrial laser scan images (TLS) of a mature beech stand (Fagus sylvatica L) in Southwestern Germany serve as input data for a representation of the aboveground tree architecture of the study stand. In the single-tree xylem water flow model (XWF) used here, 98 beech trees are represented by 3D graphs of connected cylinders with explicit orientation and size. Beech-specific hydraulic parameters and physical properties of individual trees determine the physiological response of the tree model to environmental conditions. The XWF simulations are performed without further calibration to sap flow measurements. The simulations reliably match up with sap flow estimates derived from sap flow density measurements. The density measurements strongly depend on individual sapwood area estimates and the characterization of radial sap flow density gradients with xylem depth. Although the observed pure beech stand is even-aged, we observe a high variability in sap flow rates among the individual trees. Simulations of the individual sap flow rates show a corresponding variability due to the distribution of the crown projection area in the canopy and the different proportions of sapwood area. Stand transpiration is obtained by taking the sum of 98 single-tree simulations and the corresponding sap flow estimations, which are then compared with the stand-level root water uptake model (RWU model) simulation. Using the RWU model results in a 35% higher simulation of seasonal stand transpiration relative to the XWF model. These findings demonstrate the importance of individual tree dimensions and stand heterogeneity assessments in estimating stand water use. As a consequence of species-specific model parameterization and precise TLS-based stand characterization, the XWF model is applicable to various sites and tree species and is a promising tool for predicting the possible water supply limitations of pure and mixed forest stands. (C) 2013 Elsevier B.V. All rights reserved.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
  • [1]2Nästa
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy