SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holst Jutta) ;hsvcat:4"

Sökning: WFRF:(Holst Jutta) > Lantbruksvetenskap

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lindroth, Anders, et al. (författare)
  • Effects of drought and meteorological forcing on carbon and water fluxes in Nordic forests during the dry summer of 2018
  • 2020
  • Ingår i: Philosophical Transactions of the Royal Society B-Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 375:1810
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nordic region was subjected to severe drought in 2018 with a particularly long-lasting and large soil water deficit in Denmark, Southern Sweden and Estonia. Here, we analyse the impact of the drought on carbon and water fluxes in 11 forest ecosystems of different composition: spruce, pine, mixed and deciduous. We assess the impact of drought on fluxes by estimating the difference (anomaly) between year 2018 and a reference year without drought. Unexpectedly, the evaporation was only slightly reduced during 2018 compared to the reference year at two sites while it increased or was nearly unchanged at all other sites. This occurred under a 40 to 60% reduction in mean surface conductance and the concurrent increase in evaporative demand due to the warm and dry weather. The anomaly in the net ecosystem productivity (NEP) was 93% explained by a multilinear regression with the anomaly in heterotrophic respiration and the relative precipitation deficit as independent variables. Most of the variation (77%) was explained by the heterotrophic component. Six out of 11 forests reduced their annual NEP with more than 50 g C m(-2)yr(-1)during 2018 as compared to the reference year. The NEP anomaly ranged between -389 and +74 g C m(-2)yr(-1)with a median value of -59 g C m(-2)yr(-1). This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
  •  
2.
  • Vestin, Patrik, et al. (författare)
  • Impacts of stump harvesting on carbon dioxide, methane and nitrous oxide fluxes
  • 2022
  • Ingår i: Iforest-Biogeosciences and Forestry. - : Italian Society of Sivilculture and Forest Ecology (SISEF). - 1971-7458. ; 15, s. 148-162
  • Tidskriftsartikel (refereegranskat)abstract
    • During 2010-2013, we investigated the effects of stump harvesting on greenide (N2O) with the flux-gradient technique at four experimental plots in a hemiboreal forest in Sweden. All plots were clear-cut and soil scarified and two of the plots were additionally stump harvested. The two clear-cut plots served as control plots. Due to differences in topography, we had one wetter and one drier plot of each treatment. All plots exhibited substantial emissions of GHGs and we noted significant effects of wetness on CO2, CH4 and N2O fluxes within treatments and significant effects of stump harvesting on CO2 and N2O fluxes at the dry plots. The CO2 emissions were lower at the dry stump harvested plot than at the dry control, but when estimated emissions from the removed stumps were added, total CO2 emissions were higher at the stump harvested plot, indicating a small enhancement of soil respiration. In addition, we noted significant emissions of N2O at this plot. At the wet plots, CO2 emissions were higher at the stump harvested plot, also suggesting a treatment effect but differences in wetness and vegetation cover at these plots make this effect more uncertain. At the wet plots, we noted sustained periods (weeks to months) of net N2O uptake. During the year with simultaneous measurements of the abovementioned GHGs, GHG budgets were 1.224??103 and 1.442??103 gm-2 of CO2-equivalents at the wet and dry stump harvested plots, respectively, and 1.070??103 and 1.696??103 gm-2 of CO2-equivalents at the wet and dry control plots, respectively. CO2 fluxes dominated GHG budgets at all plots but N2O contributed with 17% at the dry stump harvested plot. For the full period 2010-2013, total carbon (CO2+CH4) budgets were 4.301??103 and 4.114??103 g m-2 of CO2-eqvivalents at the wet and dry stump harvest plots, respectively and 4.107??103 and 5.274??103 gm-2 of CO2-equivalents at the wet and dry control plots, respectively. Our results support recent studies suggesting that stump harvesting does not result in substantial increase in CO2 emissions but uncertainties regarding GHG fluxes (especially N2O) remain and more long-term measurements are needed before robust conclusions can be drawn.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy