SwePub
Sök i SwePub databas

  form:Ext_t

Träfflista för sökning "WFRF:(Hong LE) "

form:Search_simp_t: WFRF:(Hong LE)

  • navigation:Result_t 1-10 navigation:of_t 604
hitlist:Modify_result_t
   
hitlist:Enumeration_thitlist:Reference_thitlist:Reference_picture_thitlist:Find_Mark_t
1.
  •  
2.
  • Klionsky, Daniel J., et al. (creator_code:aut_t)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • record:In_t: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • swepub:Mat_researchreview_t (swepub:level_refereed_t)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • Campbell, PJ, et al. (creator_code:aut_t)
  • Pan-cancer analysis of whole genomes
  • 2020
  • record:In_t: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Settele, Josef, et al. (creator_code:aut_t)
  • Rice ecosystem services in South-east Asia
  • 2018
  • record:In_t: Paddy and Water Environment. - : Springer. - 1611-2490 .- 1611-2504. ; 16:2, s. 211-224
  • swepub:Mat_article_t (swepub:level_scientificother_t)
  •  
9.
  • Aad, G., et al. (creator_code:aut_t)
  • 2015
  • swepub:Mat_article_t (swepub:level_refereed_t)
  •  
10.
  • Aad, G., et al. (creator_code:aut_t)
  • 2014
  • swepub:Mat_article_t (swepub:level_refereed_t)
  •  
Skapa referenser, mejla, bekava och länka
  • navigation:Result_t 1-10 navigation:of_t 604
swepub:Mat_t
swepub:mat_article_t (500)
swepub:mat_conferencepaper_t (6)
swepub:mat_researchreview_t (5)
swepub:mat_report_t (1)
swepub:mat_doctoralthesis_t (1)
swepub:Level_t
swepub:level_refereed_t (588)
swepub:level_scientificother_t (12)
swepub:level_popularscientific_t (1)
swepub:Hitlist_author_t
Bauer, F. (449)
Jinnouchi, O. (448)
Milov, A. (448)
Hill, J. C. (447)
Snyder, S. (440)
Fox, H. (439)
deldatabas:search_more_t
Abbott, B. (438)
Borissov, G. (438)
Burke, S. (438)
Busato, E. (438)
Caron, S. (438)
Chakraborty, D. (438)
Cheu, E. (438)
Gillberg, D. (438)
Haas, A. (438)
Kehoe, R. (438)
Kupco, A. (438)
Kvita, J. (438)
Lokajicek, M. (438)
Lounis, A. (438)
Monk, J. (438)
Piegaia, R. (438)
Pleier, M. -A. (438)
Qian, J. (438)
Quadt, A. (438)
Sawyer, L. (438)
Schaile, D. (438)
Schmitt, C. (438)
Schwartzman, A. (438)
Bos, K. (437)
Brandt, A. (437)
Brock, R. (437)
Burdin, S. (437)
Cooke, M. (437)
Crepe-Renaudin, S. (437)
Feligioni, L. (437)
Greenwood, Z. D. (437)
Hauser, R. (437)
Hohlfeld, M. (437)
Jakobs, K. (437)
Lubatti, H. J. (437)
Meyer, J. (437)
Moore, R. W. (437)
Neal, H. A. (437)
Pope, B. G. (437)
Protopopescu, S. (437)
Rijssenbeek, M. (437)
Shabalina, E. (437)
Simak, V. (437)
Sosebee, M. (437)
deldatabas:search_less_t
swepub:Hitlist_uni_t
swepub_uni:lu_t (472)
swepub_uni:uu_t (288)
swepub_uni:kth_t (109)
swepub_uni:su_t (92)
swepub_uni:ki_t (34)
swepub_uni:umu_t (25)
deldatabas:search_more_t
swepub_uni:slu_t (13)
swepub_uni:cth_t (12)
swepub_uni:gu_t (9)
swepub_uni:liu_t (7)
swepub_uni:mau_t (2)
swepub_uni:ltu_t (1)
swepub_uni:lnu_t (1)
swepub_uni:bth_t (1)
deldatabas:search_less_t
hitlist:Language_t
language:Eng_t (602)
language:Swe_t (2)
hitlist:HSV_t
hsv:Cat_1_t (369)
hsv:Cat_3_t (54)
hsv:Cat_4_t (12)
hsv:Cat_2_t (4)
hsv:Cat_5_t (2)

hitlist:Year_t

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt tools:Close_t

tools:Permalink_label_t