SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hori Yasunori) ;pers:(Brandt Timothy D.)"

Sökning: WFRF:(Hori Yasunori) > Brandt Timothy D.

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Harakawa, Hiroki, et al. (författare)
  • A super-Earth orbiting near the inner edge of the habitable zone around the M4.5 dwarf Ross 508
  • 2022
  • Ingår i: Publications of the Astronomical Society of Japan. - : Oxford University Press (OUP). - 0004-6264 .- 2053-051X. ; 74:4, s. 904-922
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the near-infrared radial velocity (RV) discovery of a super-Earth planet on a 10.77 d orbit around the M4.5 dwarf Ross 508 (Jmag = 9.1). Using precision RVs from the Subaru Telescope IRD (InfraRed Doppler) instrument, we derive a semi-amplitude of 3.92ms−1⁠, corresponding to a planet with a minimum mass msini=4.00M⊕⁠. We find no evidence of significant signals at the detected period in spectroscopic stellar activity indicators or MEarth photometry. The planet, Ross 508 b, has a semi-major axis of 0.05366au. This gives an orbit-averaged insolation of ≈1.4 times the Earth’s value, placing Ross 508 b near the inner edge of its star’s habitable zone. We have explored the possibility that the planet has a high eccentricity and its host is accompanied by an additional unconfirmed companion on a wide orbit. Our discovery demonstrates that the near-infrared RV search can play a crucial role in finding a low-mass planet around cool M dwarfs like Ross 508.
  •  
2.
  • Kuzuhara, Masayuki, et al. (författare)
  • Direct-imaging Discovery and Dynamical Mass of a Substellar Companion Orbiting an Accelerating Hyades Sun-like Star with SCExAO/CHARIS
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 934:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the direct-imaging discovery of a substellar companion in orbit around a Sun-like star member of the Hyades open cluster. So far, no other substellar companions have been unambiguously confirmed via direct imaging around main-sequence stars in Hyades. The star HIP 21152 is an accelerating star as identified by the astrometry from the Gaia and Hipparcos satellites. We detected the companion, HIP 21152 B, in multiple epochs using the high-contrast imaging from SCExAO/CHARIS and Keck/NIRC2. We also obtained the stellar radialvelocity data from the Okayama 188 cm telescope. The CHARIS spectroscopy reveals that HIP 21152 B’s spectrum is consistent with the L/T transition, best fit by an early T dwarf. Our orbit modeling determines the semimajor axis and the dynamical mass of HIP 21152 B to be 17.5-+3.87.2 au and 27.8-+5.48.4 MJup, respectively. The mass ratio of HIP 21152 B relative to its host is ≈2%, near the planet/brown dwarf boundary suggested by recent surveys. Mass estimates inferred from luminosity-evolution models are slightly higher (33–42 MJup). With a dynamical mass and a well-constrained age due to the system’s Hyades membership, HIP 21152 B will become a critical benchmark in understanding the formation, evolution, and atmosphere of a substellar object as a function of mass and age. Our discovery is yet another key proof of concept for using precision astrometry to select directimaging targets.
  •  
3.
  • Kuzuhara, Masayuki, et al. (författare)
  • Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Transmission Spectroscopy
  • 2024
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 969:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent discoveries of Earth-sized planets transiting nearby M dwarfs have made it possible to characterize the atmospheres of terrestrial planets via follow-up spectroscopic observations. However, the number of such planets receiving low insolation is still small, limiting our ability to understand the diversity of the atmospheric composition and climates of temperate terrestrial planets. We report the discovery of an Earth-sized planet transiting the nearby (12 pc) inactive M3.0 dwarf Gliese 12 (TOI-6251) with an orbital period (P(or)b) of 12.76 days. The planet, Gliese 12 b, was initially identified as a candidate with an ambiguous P-orb from TESS data. We confirmed the transit signal and P-orb using ground-based photometry with MuSCAT2 and MuSCAT3, and validated the planetary nature of the signal using high-resolution images from Gemini/NIRI and Keck/NIRC2 as well as radial velocity (RV) measurements from the InfraRed Doppler instrument on the Subaru 8.2 m telescope and from CARMENES on the CAHA 3.5 m telescope. X-ray observations with XMM-Newton showed the host star is inactive, with an X-ray-to-bolometric luminosity ratio of log L-X/L-bol approximate to - 5.7. Joint analysis of the light curves and RV measurements revealed that Gliese 12 b has a radius of 0.96 +/- 0.05 R-circle plus, a 3 sigma mass upper limit of 3.9M(circle plus), and an equilibrium temperature of 315 +/- 6 K assuming zero albedo. The transmission spectroscopy metric (TSM) value of Gliese 12 b is close to the TSM values of the TRAPPIST-1 planets, adding Gliese 12 b to the small list of potentially terrestrial, temperate planets amenable to atmospheric characterization with JWST.
  •  
4.
  • Uyama, Taichi, et al. (författare)
  • Atmospheric Characterization and Further Orbital Modeling of kappa Andromeda b
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 159:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present kappa Andromeda b's photometry and astrometry taken with Subaru/SCExAO+HiCIAO and Keck/NIRC2, combined with recently published SCExAO/CHARIS low-resolution spectroscopy and published thermal infrared photometry to further constrain the companion's atmospheric properties and orbit. The Y/Y-K colors of kappa And b are redder than field dwarfs, consistent with its youth and lower gravity. Empirical comparisons of its Y-band photometry and CHARIS spectrum to a large spectral library of isolated field dwarfs reaffirm the conclusion from Currie et al. that it likely has a low gravity but admit a wider range of most plausible spectral types (L0-L2). Our gravitational classification also suggests that the best-fit objects for kappa And b may have lower gravity than those previously reported. Atmospheric models lacking dust/clouds fail to reproduce its entire 1-4.7 mu m spectral energy distribution (SED), and cloudy atmosphere models with temperatures of similar to 1700-2000 K better match kappa And b data. Most well-fitting model comparisons favor 1700-1900 K, a surface gravity of log(g) similar to 4-4.5, and a radius of 1.3-1.6 R-Jup; the best-fit model (Drift-Phoenix) yields the coolest and lowest-gravity values: T-eff = 1700 K and log g = 4.0. An update to kappa And b's orbit with ExoSOFT using new astrometry spanning 7 yr reaffirms its high eccentricity (0.77 0.08). We consider a scenario where unseen companions are responsible for scattering kappa And b to a wide separation and high eccentricity. If three planets, including kappa And b, were born with coplanar orbits, and one of them was ejected by gravitational scattering, a potential inner companion with mass greater than or similar to 10 M-Jup could be located at less than or similar to 25 au.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy