SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hortobagyi Tibor) ;lar1:(ki)"

Sökning: WFRF:(Hortobagyi Tibor) > Karolinska Institutet

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alafuzoff, Irina, et al. (författare)
  • Assessment of beta-amyloid deposits in human brain : a study of the BrainNet Europe Consortium
  • 2009
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 117:3, s. 309-320
  • Tidskriftsartikel (refereegranskat)abstract
    • beta-Amyloid (A-beta) related pathology shows a range of lesions which differ both qualitatively and quantitatively. Pathologists, to date, mainly focused on the assessment of both of these aspects but attempts to correlate the findings with clinical phenotypes are not convincing. It has been recently proposed in the same way as iota and alpha synuclein related lesions, also A-beta related pathology may follow a temporal evolution, i.e. distinct phases, characterized by a step-wise involvement of different brain-regions. Twenty-six independent observers reached an 81% absolute agreement while assessing the phase of A-beta, i.e. phase 1 = deposition of A-beta exclusively in neocortex, phase 2 = additionally in allocortex, phase 3 = additionally in diencephalon, phase 4 = additionally in brainstem, and phase 5 = additionally in cerebellum. These high agreement rates were reached when at least six brain regions were evaluated. Likewise, a high agreement (93%) was reached while assessing the absence/presence of cerebral amyloid angiopathy (CAA) and the type of CAA (74%) while examining the six brain regions. Of note, most of observers failed to detect capillary CAA when it was only mild and focal and thus instead of type 1, type 2 CAA was diagnosed. In conclusion, a reliable assessment of A-beta phase and presence/absence of CAA was achieved by a total of 26 observers who examined a standardized set of blocks taken from only six anatomical regions, applying commercially available reagents and by assessing them as instructed. Thus, one may consider rating of A-beta-phases as a diagnostic tool while analyzing subjects with suspected Alzheimer's disease (AD). Because most of these blocks are currently routinely sampled by the majority of laboratories, assessment of the A-beta phase in AD is feasible even in large scale retrospective studies.
  •  
2.
  • Alafuzoff, Irina, et al. (författare)
  • Neuropathological assessments of the pathology in frontotemporal lobar degeneration with TDP43-positive inclusions : an inter-laboratory study by the BrainNet Europe consortium
  • 2015
  • Ingår i: Journal of neural transmission. - : Springer Science and Business Media LLC. - 0300-9564 .- 1435-1463. ; 122:7, s. 957-972
  • Tidskriftsartikel (refereegranskat)abstract
    • The BrainNet Europe consortium assessed the reproducibility in the assignment of the type of frontotemporal lobar degeneration (FTLD) with TAR DNA-binding protein (TDP) 43 following current recommendations. The agreement rates were influenced by the immunohistochemical (IHC) method and by the classification strategy followed. p62-IHC staining yielded good uniform quality of stains, but the most reliable results were obtained implementing specific Abs directed against the hallmark protein TDP43. Both assessment of the type and the extent of lesions were influenced by the Abs and by the quality of stain. Assessment of the extent of the lesions yielded poor results repeatedly; thus, the extent of pathology should not be used in diagnostic consensus criteria. Whilst 31 neuropathologists typed 30 FTLD-TDP cases, inter-rater agreement ranged from 19 to 100 per cent, being highest when applying phosphorylated TDP43/IHC. The agreement was highest when designating Type C or Type A/B. In contrast, there was a poor agreement when attempting to separate Type A or Type B FTLD-TDP. In conclusion, we can expect that neuropathologist, independent of his/her familiarity with FTLD-TDP pathology, can identify a TDP43-positive FTLD case. The goal should be to state a Type (A, B, C, D) or a mixture of Types (A/B, A/C or B/C). Neuropathologists, other clinicians and researchers should be aware of the pitfalls whilst doing so. Agreement can be reached in an inter-laboratory setting regarding Type C cases with thick and long neurites, whereas the differentiation between Types A and B may be more troublesome.
  •  
3.
  • Ashton, Nicholas J., et al. (författare)
  • An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders.
  • 2020
  • Ingår i: Nature Reviews Neurology. - : Springer Science and Business Media LLC. - 1759-4766 .- 1759-4758. ; 16, s. 265-284
  • Forskningsöversikt (refereegranskat)abstract
    • Cerebrospinal fluid analyses and neuroimaging can identify the underlying pathophysiology at the earliest stage of some neurodegenerative disorders, but do not have the scalability needed for population screening. Therefore, a blood-based marker for such pathophysiology would have greater utility in a primary care setting and in eligibility screening for clinical trials. Rapid advances in ultra-sensitive assays have enabled the levels of pathological proteins to be measured in blood samples, but research has been predominantly focused on Alzheimer disease (AD). Nonetheless, proteins that were identified as potential blood-based biomarkers for AD, for example, amyloid-β, tau, phosphorylated tau and neurofilament light chain, are likely to be relevant to other neurodegenerative disorders that involve similar pathological processes and could also be useful for the differential diagnosis of clinical symptoms. This Review outlines the neuropathological, clinical, molecular imaging and cerebrospinal fluid features of the most common neurodegenerative disorders outside the AD continuum and gives an overview of the current status of blood-based biomarkers for these disorders.
  •  
4.
  • Ashton, Nicholas J., et al. (författare)
  • Increased plasma neurofilament light chain concentration correlates with severity of post-mortem neurofibrillary tangle pathology and neurodegeneration
  • 2019
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is pathologically characterized by the accumulation of amyloid-β (Aβ) plaques, neurofibrillary tangles and widespread neuronal loss in the brain. In recent years, blood biomarkers have emerged as a realistic prospect to highlight accumulating pathology for secondary prevention trials. Neurofilament light chain (NfL), a marker of axonal degeneration, is robustly elevated in the blood of many neurological and neurodegenerative conditions, including AD. A strong relationship with cerebrospinal fluid (CSF) NfL suggests that these biomarker modalities reflect the same pathological process. Yet, the connection between blood NfL and brain tissue pathology has not been directly compared. In this study, longitudinal plasma NfL from cognitively healthy controls (n = 12) and AD participants (n = 57) were quantified by the Simoa platform. On reaching post-mortem, neuropathological assessment was performed on all participants, with additional frozen and paraffin-embedded tissue acquired from 26 participants for further biochemical (Aβ1-42, Aβ1-40, tau) and histological (NfL) evaluation. Plasma NfL concentrations were significantly increased in AD and correlated with cognitive decline, independent of age. Retrospective stratification based on Braak staging revealed that baseline plasma NfL concentrations were associated with higher neurofibrillary tangle pathology at post-mortem. Longitudinal increases in plasma NfL were observed in all Braak groupings; a significant negative association, however, was found between plasma NfL at time point 1 and both its rate of change and annual percentage increase. Immunohistochemical evaluation of NfL in the medial temporal gyrus (MTG) demonstrated an inverse relationship between Braak stages and NfL staining. Importantly, a significant negative correlation was found between the plasma NfL measurement closest to death and the level of NfL staining in the MTG at post-mortem. For the first time, we demonstrate that plasma NfL associates with the severity of neurofibrillary tangle pathology and neurodegeneration in the post-mortem brain.
  •  
5.
  • Huttner, Hagen B, et al. (författare)
  • The age and genomic integrity of neurons after cortical stroke in humans
  • 2014
  • Ingår i: Nature Neuroscience. - : Springer Science and Business Media LLC. - 1097-6256 .- 1546-1726. ; 17:6, s. 801-803
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been unclear whether ischemic stroke induces neurogenesis or neuronal DNA rearrangements in the human neocortex. Using immunohistochemistry; transcriptome, genome and ploidy analyses; and determination of nuclear bomb test-derived (14)C concentration in neuronal DNA, we found neither to be the case. A large proportion of cortical neurons displayed DNA fragmentation and DNA repair a short time after stroke, whereas neurons at chronic stages after stroke showed DNA integrity, demonstrating the relevance of an intact genome for survival.
  •  
6.
  • Kovacs, Gabor G, et al. (författare)
  • Neuropathology of the hippocampus in FTLD-Tau with Pick bodies : A study of the BrainNet Europe Consortium
  • 2013
  • Ingår i: Neuropathology and Applied Neurobiology. - : Wiley. - 0305-1846 .- 1365-2990. ; 39:2, s. 166-178
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Frontotemporal lobar degeneration with Pick bodies (Pick's disease) is characterized by the presence of tau immunoreactive spherical structures in the cytoplasm of neurons. In view of confusion about the molecular pathology of Pick's disease, we aimed to evaluate the spectrum of tau pathology and concomitant neurodegeneration-associated protein depositions in the characteristically affected hippocampus. Methods: We evaluated immunoreactivity for tau (AT8, 3R, 4R), α-synuclein, TDP43, p62, and ubiquitin in the hippocampus, entorhinal and temporal cortex in 66 archival cases diagnosed neuropathologically as Pick's disease. Results: Mean age at death was 68.2 years (range 49 to 96). Fifty-two (79%) brains showed 3R immunoreactive spherical inclusions in the granule cells of the dentate gyrus. These typical cases presented mainly with the behavioural variant of FTD, followed by progressive aphasia, mixed syndromes or early memory disturbance. α-Synuclein immunoreactivity was seen only in occasional spherical tau-positive inclusions, TDP-43 IR was absent, and 4R IR was present only as neurofibrillary tangles in pyramidal neurons. Aβ immunoreactivity was observed in 16 cases; however, the overall level of Alzheimer's disease-related alterations was mainly low or intermediate (n = 3). Furthermore, we identified six cases with unclassifiable tauopathy. Conclusions: 1) Pick's disease may occur also in elderly patients and is characterized by a relatively uniform pathology with 3R tau inclusions particularly in the granule cells of dentate gyrus; 2) even minor deviation from these morphological criteria suggests a different disorder; and 3) immunohistological revision of archival cases expands the spectrum of tauopathies that require further classification.
  •  
7.
  • Velásquez, Erika, et al. (författare)
  • Topological Dissection of Proteomic Changes Linked to the Limbic Stage of Alzheimer’s Disease
  • 2021
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common cause of dementia worldwide. In AD, neurodegeneration spreads throughout different areas of the central nervous system (CNS) in a gradual and predictable pattern, causing progressive memory decline and cognitive impairment. Deposition of neurofibrillary tangles (NFTs) in specific CNS regions correlates with the severity of AD and constitutes the basis for disease classification into different Braak stages (I-VI). Early clinical symptoms are typically associated with stages III-IV (i.e., limbic stages) when the involvement of the hippocampus begins. Histopathological changes in AD have been linked to brain proteome alterations, including aberrant posttranslational modifications (PTMs) such as the hyperphosphorylation of Tau. Most proteomic studies to date have focused on AD progression across different stages of the disease, by targeting one specific brain area at a time. However, in AD vulnerable regions, stage-specific proteomic alterations, including changes in PTM status occur in parallel and remain poorly characterized. Here, we conducted proteomic, phosphoproteomic, and acetylomic analyses of human postmortem tissue samples from AD (Braak stage III-IV, n=11) and control brains (n=12), covering all anatomical areas affected during the limbic stage of the disease (total hippocampus, CA1, entorhinal and perirhinal cortices). Overall, ~6000 proteins, ~9000 unique phosphopeptides and 221 acetylated peptides were accurately quantified across all tissues. Our results reveal significant proteome changes in AD brains compared to controls. Among others, we have observed the dysregulation of pathways related to the adaptive and innate immune responses, including several altered antimicrobial peptides (AMPs). Notably, some of these changes were restricted to specific anatomical areas, while others altered according to disease progression across the regions studied. Our data highlights the molecular heterogeneity of AD and the relevance of neuroinflammation as a major player in AD pathology. Data are available via ProteomeXchange with identifier PXD027173.
  •  
8.
  • Wilhelmsson, Ulrika, 1970, et al. (författare)
  • Injury leads to the appearance of cells with characteristics of both microglia and astrocytes in mouse and human brain.
  • 2017
  • Ingår i: Cerebral cortex. - : Oxford University Press (OUP). - 1460-2199 .- 1047-3211. ; 27:6, s. 3360-3377
  • Tidskriftsartikel (refereegranskat)abstract
    • Microglia and astrocytes have been considered until now as cells with very distinct identities. Here, we assessed the heterogeneity within microglia/monocyte cell population in mouse hippocampus and determined their response to injury, by using single-cell gene expression profiling of cells isolated from uninjured and deafferented hippocampus. We found that in individual cells, microglial markers Cx3cr1, Aif1, Itgam, and Cd68 were co-expressed. Interestingly, injury led to the co-expression of the astrocyte marker Gfap in a subpopulation of Cx3cr1-expressing cells from both the injured and contralesional hippocampus. Cells co-expressing astrocyte and microglia markers were also detected in the in vitro LPS activation/injury model and in sections from human brain affected by stroke, Alzheimer's disease, and Lewy body dementia. Our findings indicate that injury and chronic neurodegeneration lead to the appearance of cells that share molecular characteristics of both microglia and astrocytes, 2 cell types with distinct embryologic origin and function.
  •  
9.
  • Zhong, Wen, et al. (författare)
  • The neuropeptide landscape of human prefrontal cortex
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:33
  • Tidskriftsartikel (refereegranskat)abstract
    • Human prefrontal cortex (hPFC) is a complex brain region involved in cognitive and emotional processes and several psychiatric disorders. Here, we present an overview of the distribution of the peptidergic systems in 17 subregions of hPFC and three reference cortices obtained by microdissection and based on RNA sequencing and RNA-scope methods integrated with published single-cell transcriptomics data. We detected expression of 60 neuropeptides and 60 neuropeptide receptors in at least one of the hPFC subregions. The results reveal that the peptidergic landscape in PFC consists of closely located and functionally different subregions with unique peptide/transmitter- related profiles. Neuropeptide-rich PFC subregions were identified, encompassing regions from anterior cingulate cortex/orbitofrontal gyrus. Furthermore, marked differences in gene expression exist between different PFC regions (>5-fold; cocaine and amphetamine-regulated transcript peptide) as well as between PFC regions and reference regions, for example, for somatostatin and several receptors. We suggest that the present approach allows definition of, still hypothetical, microcircuits exemplified by glutamatergic neurons expressing a peptide cotransmitter either as an agonist (hypocretin/orexin) or antagonist (galanin). Specific neuropeptide receptors have been identified as possible targets for neuronal afferents and, interestingly, peripheral blood-borne peptide hormones (leptin, adiponectin, gastric inhibitory peptide, glucagon-like peptides, and peptide YY). Together with other recent publications, our results support the view that neuropeptide systems may play an important role in hPFC and underpin the concept that neuropeptide signaling helps stabilize circuit connectivity and fine-tune/modulate PFC functions executed during health and disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (8)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (9)
Författare/redaktör
Alafuzoff, Irina (3)
Kovacs, Gabor G. (3)
Bogdanovic, Nenad (3)
Al-Sarraj, Safa (3)
Arzberger, Thomas (3)
Bodi, Istvan (3)
visa fler...
Gelpi, Ellen (3)
Giaccone, Giorgio (3)
King, Andrew (3)
Aarsland, Dag (2)
Mulder, Jan (2)
Mitsios, Nicholas (2)
Palkovits, Miklos (2)
Pikkarainen, Maria (2)
Gentleman, Stephen (2)
Korkolopoulou, Penel ... (2)
Meyronet, David (2)
Monoranu, Camelia (2)
Parchi, Piero (2)
Patsouris, Efstratio ... (2)
Seilhean, Danielle (2)
Streichenberger, Nat ... (2)
Blennow, Kaj, 1958 (1)
Oksvold, Per (1)
Possnert, Göran (1)
Zetterberg, Henrik, ... (1)
Uhlén, Mathias (1)
Zhong, Wen (1)
von Feilitzen, Kalle (1)
Dahl, Andreas (1)
Lundeberg, Joakim (1)
Nogueira, Fabio C.S. (1)
Domont, Gilberto B. (1)
Adori, Csaba (1)
Barde, Swapnali (1)
Magloczky, Zsofia (1)
Hokfelt, Tomas (1)
Kokaia, Zaal (1)
Blennow, Kaj (1)
Englund, Elisabet (1)
Lindvall, Olle (1)
Marko-Varga, György (1)
Werne Solnestam, Bea ... (1)
Suárez-Calvet, Marc (1)
Svenningsson, Per (1)
Andersson, Daniel, 1 ... (1)
Ståhlberg, Anders, 1 ... (1)
Budka, Herbert (1)
Ferrer, Isidro (1)
Roggendorf, Wolfgang (1)
visa färre...
Lärosäte
Uppsala universitet (4)
Lunds universitet (4)
Göteborgs universitet (3)
Kungliga Tekniska Högskolan (2)
Linköpings universitet (1)
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy