SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Horton Edward) ;hsvcat:3"

Sökning: WFRF:(Horton Edward) > Medicin och hälsovetenskap

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Varga, Tibor V., et al. (författare)
  • Comprehensive Analysis of Established Dyslipidemia-Associated Loci in the Diabetes Prevention Program
  • 2016
  • Ingår i: Circulation. - : Lippincott Williams & Wilkins. - 1942-325X .- 1942-3268. ; 9:6, s. 495-503
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We assessed whether 234 established dyslipidemia-associated loci modify the effects of metformin treatment and lifestyle intervention (versus placebo control) on lipid and lipid subfraction levels in the Diabetes Prevention Program randomized controlled trial. Methods and Results: We tested gene treatment interactions in relation to baseline-adjusted follow-up blood lipid concentrations (high-density lipoprotein [HDL] and low-density lipoprotein-cholesterol, total cholesterol, and triglycerides) and lipoprotein subfraction particle concentrations and size in 2993 participants with pre-diabetes. Of the previously reported single-nucleotide polymorphism associations, 32.5% replicated at P<0.05 with baseline lipid traits. Trait-specific genetic risk scores were robustly associated (3x10(-4)>P>1.1x10(-16)) with their respective baseline traits for all but 2 traits. Lifestyle modified the effect of the genetic risk score for large HDL particle numbers, such that each risk allele of the genetic risk scores was associated with lower concentrations of large HDL particles at follow-up in the lifestyle arm (beta=-0.11 mu mol/L per genetic risk scores risk allele; 95% confidence interval, -0.188 to -0.033; P=5x10(-3); P-interaction=1x10(-3) for lifestyle versus placebo), but not in the metformin or placebo arms (P>0.05). In the lifestyle arm, participants with high genetic risk had more favorable or similar trait levels at 1-year compared with participants at lower genetic risk at baseline for 17 of the 20 traits. Conclusions: Improvements in large HDL particle concentrations conferred by lifestyle may be diminished by genetic factors. Lifestyle intervention, however, was successful in offsetting unfavorable genetic loading for most lipid traits.
  •  
2.
  • Goodyear, Laurie J.L, et al. (författare)
  • Glucoseingestion causes GLUT4 translocation in human skeletal muscle
  • 1996
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 45:8, s. 1051-1056
  • Tidskriftsartikel (refereegranskat)abstract
    • In humans, ingestion of carbohydrates causes an increase in blood glucose concentration, pancreatic insulin release, and increased glucose disposal into skeletal muscle. The underlying molecular mechanism for the increase in glucose disposal in human skeletal muscle after carbohydrate ingestion is not known. We determined whether glucoseingestion increases glucose uptake in human skeletal muscle by increasing the number of glucose transporter proteins at the cell surface and/or by increasing the activity of the glucose transporter proteins in the plasma membrane. Under local anesthesia, approximately 1 g of vastus lateralis muscle was obtained from six healthy subjects before and 60 min after ingestion of a 75-g glucose load. Plasma membranes were isolated from the skeletal muscle and used to measure GLUT4 and GLUT1 content and glucosetransport in plasma membrane vesicles. Glucose ingestion increased the plasma membrane content of GLUT4 per gram muscle (3,524 +/- 729 vs. 4,473 +/- 952 arbitrary units for basal and 60 min, respectively; P < 0.005). Transporter-mediated glucosetransport into plasma membrane vesicles was also significantly increased (130 +/- 11 vs. 224 +/- 38 pmol.mg-1.s-1; P < 0.017), whereas the calculated ratio of glucose transport to GLUT4, an indication of transporter functional activity, was not significantly increased 60 min after glucose ingestion (2.3 +/- 0.4 vs. 3.0 +/- 0.5 pmol.GLUT4 arbitrary units-1.s-1; P < 0.17). These results demonstrate that oral ingestion of glucose increases the rate of glucose transport across the plasma membrane and causes GLUT4 translocation in human skeletal muscle. These findings suggest that under physiological conditions the translocation of GLUT4 is an important mechanism for the stimulation of glucose uptake in human skeletal muscle.
  •  
3.
  • McCaffery, Jeanne M., et al. (författare)
  • Replication of the Association of BDNF and MC4R Variants With Dietary Intake in the Diabetes Prevention Program
  • 2017
  • Ingår i: Psychosomatic Medicine. - : Lippincott Williams & Wilkins. - 0033-3174 .- 1534-7796. ; 79:2, s. 224-233
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Genomewide association studies (GWAS) have identified consistent associations with obesity, with a number of studies implicating eating behavior as a primary mechanism. Few studies have replicated genetic associations with dietary intake. This study evaluates the association between obesity susceptibility loci and dietary intake. Methods: Data were obtained as part of the Diabetes Prevention Program (DPP), a clinical trial of diabetes prevention in persons at high risk of diabetes. The association of 31 genomewide association studies identified obesity risk alleles with dietary intake, measured through a food frequency questionnaire, was investigated in 3,180 participants from DPP at baseline. Results: The minor allele at BDNF, identified as protective against obesity, was associated with lower total caloric intake (beta = -106.06, SE = 33.13; p = .0014) at experimentwide statistical significance (p = .0016), whereas association of MC4R rs571312 with higher caloric intake reached nominal significance (beta = 61.32, SE = 26.24; p = .0194). Among non-Hispanic white participants, the association of BDNF rs2030323 with total caloric intake was stronger (beta = -151.99, SE = 30.09; p < .0001), and association of FTO rs1421085 with higher caloric intake (beta = 56.72, SE = 20.69; p = .0061) and percentage fat intake (beta = 0.37, SE = 0.08; p =. 0418) was also observed. Conclusions: These results demonstrate with the strength of independent replication that BDNF rs2030323 is associated with 100 to 150 greater total caloric intake per allele, with additional contributions of MC4R and, in non-Hispanic white individuals, FTO. As it has been argued that an additional 100 kcal/d could account for the trends in weight gain, prevention focusing on genetic profiles with high dietary intake may help to quell adverse obesity trends.
  •  
4.
  • Thorell, Anders, et al. (författare)
  • Surgery-induced insulin resistance in human patients relations to glucoseutilization and transport
  • 1999
  • Ingår i: American Journal of Physiology. - : American Physiological Society. - 0002-9513 .- 2163-5773. ; 276:4, s. E754-E761
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the underlying molecular mechanisms for surgery-induced insulin resistance in skeletal muscle, six otherwise healthy patients undergoing total hip replacement were studied before, during, and after surgery. Patients were studied under basal conditions and during physiological hyperinsulinemia (60 microU/ml). Biopsies of vastus lateralis muscle were used to measure GLUT-4 translocation, glucose transport, and glycogen synthase activities. Surgery reduced insulin-stimulated glucose disposal (P < 0.05) without altering the insulin-stimulated increase in glucose oxidation or suppression of endogenous glucose production. Preoperatively, insulin infusion increased plasma membrane GLUT-4 in all six subjects (P < 0.05), whereas insulin-stimulated GLUT-4 translocation only occurred in three patientspostoperatively (not significant). Moreover, nonoxidative glucose disposal rates and basal levels of glycogen synthase activities in muscle were reduced postoperatively (P < 0.05). These findings demonstrate that peripheral insulin resistance develops immediately postoperatively and that this condition might be associated with perturbations in insulin-stimulated GLUT-4 translocation as well as nonoxidative glucose disposal, presumably at the level of glycogen synthesis.
  •  
5.
  • Bray, George A., et al. (författare)
  • Long-Term Safety, Tolerability, and Weight Loss Associated With Metformin in the Diabetes Prevention Program Outcomes Study
  • 2012
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 35:4, s. 731-737
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Metformin produced weight loss and delayed or prevented diabetes in the Diabetes Prevention Program (DPP). We examined its long-term safety and tolerability along with weight loss, and change in waist circumference during the DPP and its long-term follow-up. RESEARCH DESIGN AND METHODS-The randomized double-blind clinical trial of metformin or placebo followed by a 7-8-year open-label extension and analysis of adverse events, tolerability, and the effect of adherence on change in weight and waist circumference. RESULTS-No significant safety issues were identified. Gastrointestinal symptoms were more common in metformin than placebo participants and declined over time. During the DPP, average hemoglobin and hematocrit levels were slightly lower in the metformin group than in the placebo group. Decreases in hemoglobin and hematocrit in the metformin group occurred during the first year following randomization, with no further changes observed over time. During the DPP, metformin participants had reduced body weight and waist circumference compared with placebo (weight by 2.06 +/- 5.65% vs. 0.02 +/- 5.52%, P < 0.001, and waist circumference by 2.13 +/- 7.06 cm vs. 0.79 +/- 6.54 cm, P < 0.001 in metformin vs. placebo, respectively). The magnitude of weight loss during the 2-year double-blind period was directly related to adherence (P < 0.001). Throughout the unblinded follow-up, weight loss remained significantly greater in the metformin group than in the placebo group (2.0 vs. 0.2%, P < 0.001), and this was related to the degree of continuing metformin adherence (P < 0.001). CONCLUSIONS-Metformin used for diabetes prevention is safe and well tolerated. Weight loss is related to adherence to metformin and is durable for at least 10 years of treatment.
  •  
6.
  • Florez, Jose C., et al. (författare)
  • Effects of Genetic Variants Previously Associated with Fasting Glucose and Insulin in the Diabetes Prevention Program
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Common genetic variants have been recently associated with fasting glucose and insulin levels in white populations. Whether these associations replicate in pre-diabetes is not known. We extended these findings to the Diabetes Prevention Program, a clinical trial in which participants at high risk for diabetes were randomized to placebo, lifestyle modification or metformin for diabetes prevention. We genotyped previously reported polymorphisms (or their proxies) in/near G6PC2, MTNR1B, GCK, DGKB, GCKR, ADCY5, MADD, CRY2, ADRA2A, FADS1, PROX1, SLC2A2, GLIS3, C2CD4B, IGF1, and IRS1 in 3,548 Diabetes Prevention Program participants. We analyzed variants for association with baseline glycemic traits, incident diabetes and their interaction with response to metformin or lifestyle intervention. We replicated associations with fasting glucose at MTNR1B (P<0.001), G6PC2 (P=0.002) and GCKR (P=0.001). We noted impaired beta-cell function in carriers of glucose-raising alleles at MTNR1B (P<0.001), and an increase in the insulinogenic index for the glucose-raising allele at G6PC2 (P<0.001). The association of MTNR1B with fasting glucose and impaired beta-cell function persisted at 1 year despite adjustment for the baseline trait, indicating a sustained deleterious effect at this locus. We also replicated the association of MADD with fasting proinsulin levels (P<0.001). We detected no significant impact of these variants on diabetes incidence or interaction with preventive interventions. The association of several polymorphisms with quantitative glycemic traits is replicated in a cohort of high-risk persons. These variants do not have a detectable impact on diabetes incidence or response to metformin or lifestyle modification in the Diabetes Prevention Program.
  •  
7.
  • Franks, Paul, et al. (författare)
  • Common variation at PPARGC1A/B and change in body composition and metabolic traits following preventive interventions : the Diabetes Prevention Program
  • 2014
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 57:3, s. 485-490
  • Tidskriftsartikel (refereegranskat)abstract
    • PPARGC1A and PPARGCB encode transcriptional coactivators that regulate numerous metabolic processes. We tested associations and treatment (i.e. metformin or lifestyle modification) interactions with metabolic traits in the Diabetes Prevention Program, a randomised controlled trial in persons at high risk of type 2 diabetes. We used Tagger software to select 75 PPARGCA1 and 94 PPARGC1B tag single-nucleotide polymorphisms (SNPs) for analysis. These SNPs were tested for associations with relevant cardiometabolic quantitative traits using generalised linear models. Aggregate genetic effects were tested using the sequence kernel association test. In aggregate, PPARGC1A variation was strongly associated with baseline triacylglycerol concentrations (p = 2.9 x 10(-30)), BMI (p = 2.0 x 10(-5)) and visceral adiposity (p = 1.9 x 10(-4)), as well as with changes in triacylglycerol concentrations (p = 1.7 x 10(-5)) and BMI (p = 9.9 x 10(-5)) from baseline to 1 year. PPARGC1B variation was only associated with baseline subcutaneous adiposity (p = 0.01). In individual SNP analyses, Gly482Ser (rs8192678, PPARGC1A) was associated with accumulation of subcutaneous adiposity and worsening insulin resistance at 1 year (both p < 0.05), while rs2970852 (PPARGC1A) modified the effects of metformin on triacylglycerol levels (p (interaction) = 0.04). These findings provide several novel and other confirmatory insights into the role of PPARGC1A variation with respect to diabetes-related metabolic traits. Trial registration ClinicalTrials.gov NCT00004992.
  •  
8.
  • Hivert, Marie-France, et al. (författare)
  • Lifestyle and metformin ameliorate insulin sensitivity independently of the genetic burden of established insulin resistance variants in Diabetes Prevention Program participants.
  • 2016
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 65:2, s. 520-526
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies of glycemic traits have identified genetics variants that are associated with insulin resistance (IR) in the general population. It is unknown if people with genetic enrichment for these IR-variants respond differently to interventions that aim to improve insulin sensitivity. We built a genetic risk score based on 17 established IR-variants and their effect sizes (weighted IR-GRS) in 2,713 participants of the Diabetes Prevention Program (DPP) with genetic consent. We tested associations between the weighted IR-GRS and insulin sensitivity index (ISI) at baseline in all participants, and with change in ISI over 1-year of follow-up in DPP intervention (metformin and lifestyle) and control (placebo) arms. All models were adjusted for age, sex, ethnicity, and waist circumference at baseline (plus baseline ISI for 1-year ISI change models). A higher IR-GRS was associated with lower baseline ISI (β= -0.754 [SE=0.229] log-ISI per unit; P=0.001 in fully adjusted models). There was no differential effect of treatment for the association between IR-GRS on change in ISI; higher IR-GRS was associated with attenuation in ISI improvement over 1 year (β= -0.520 [SE=0.233]; P=0.03 in fully adjusted models; all treatment arms). Lifestyle intervention and metformin improved ISI, regardless of the genetic burden of IR-variants.
  •  
9.
  • Holman, Rury R., et al. (författare)
  • Effect of Nateglinide on the Incidence of Diabetes and Cardiovascular Events
  • 2010
  • Ingår i: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 362:16, s. 1463-1476
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND The ability of short-acting insulin secretagogues to reduce the risk of diabetes or cardiovascular events in people with impaired glucose tolerance is unknown. METHODS In a double-blind, randomized clinical trial, we assigned 9306 participants with impaired glucose tolerance and either cardiovascular disease or cardiovascular risk factors to receive nateglinide (up to 60 mg three times daily) or placebo, in a 2-by-2 factorial design with valsartan or placebo, in addition to participation in a lifestyle modification program. We followed the participants for a median of 5.0 years for incident diabetes (and a median of 6.5 years for vital status). We evaluated the effect of nateglinide on the occurrence of three coprimary outcomes: the development of diabetes; a core cardiovascular outcome that was a composite of death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure; and an extended cardiovascular outcome that was a composite of the individual components of the core composite cardiovascular outcome, hospitalization for unstable angina, or arterial revascularization. RESULTS After adjustment for multiple testing, nateglinide, as compared with placebo, did not significantly reduce the cumulative incidence of diabetes (36% and 34%, respectively; hazard ratio, 1.07; 95% confidence interval [CI], 1.00 to 1.15; P = 0.05), the core composite cardiovascular outcome (7.9% and 8.3%, respectively; hazard ratio, 0.94, 95% CI, 0.82 to 1.09; P = 0.43), or the extended composite cardiovascular outcome (14.2% and 15.2%, respectively; hazard ratio, 0.93, 95% CI, 0.83 to 1.03; P = 0.16). Nateglinide did, however, increase the risk of hypoglycemia. CONCLUSIONS Among persons with impaired glucose tolerance and established cardiovascular disease or cardiovascular risk factors, assignment to nateglinide for 5 years did not reduce the incidence of diabetes or the coprimary composite cardiovascular outcomes. (ClinicalTrials.gov number, NCT00097786.)
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy