SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Horváth Ildikó) ;pers:(Bansal Aruna T.)"

Sökning: WFRF:(Horváth Ildikó) > Bansal Aruna T.

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdel-Aziz, Mahmoud I., et al. (författare)
  • A multi-omics approach to delineate sputum microbiome-associated asthma inflammatory phenotypes
  • 2022
  • Ingår i: European Respiratory Journal. - : European Respiratory Society. - 0903-1936 .- 1399-3003. ; 59:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A multi-omics approach revealed the underlying biological pathways in the microbiome-driven severe asthma phenotypes. This may help to elucidate new leads for treatment development, particularly for the therapeutically challenging neutrophilic asthma.
  •  
2.
  • Brandsma, Joost, et al. (författare)
  • Lipid phenotyping of lung epithelial lining fluid in healthy human volunteers
  • 2018
  • Ingår i: Metabolomics. - : Springer-Verlag New York. - 1573-3882 .- 1573-3890. ; 14:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Lung epithelial lining fluid (ELF)-sampled through sputum induction-is a medium rich in cells, proteins and lipids. However, despite its key role in maintaining lung function, homeostasis and defences, the composition and biology of ELF, especially in respect of lipids, remain incompletely understood. Objectives: To characterise the induced sputum lipidome of healthy adult individuals, and to examine associations between different ELF lipid phenotypes and the demographic characteristics within the study cohort.Methods: Induced sputum samples were obtained from 41 healthy non-smoking adults, and their lipid compositions analysed using a combination of untargeted shotgun and liquid chromatography mass spectrometry methods. Topological data analysis (TDA) was used to group subjects with comparable sputum lipidomes in order to identify distinct ELF phenotypes.Results: The induced sputum lipidome was diverse, comprising a range of different molecular classes, including at least 75 glycerophospholipids, 13 sphingolipids, 5 sterol lipids and 12 neutral glycerolipids. TDA identified two distinct phenotypes differentiated by a higher total lipid content and specific enrichments of diacyl-glycerophosphocholines, -inositols and -glycerols in one group, with enrichments of sterols, glycolipids and sphingolipids in the other. Subjects presenting the lipid-rich ELF phenotype also had significantly higher BMI, but did not differ in respect of other demographic characteristics such as age or gender.Conclusions: We provide the first evidence that the ELF lipidome varies significantly between healthy individuals and propose that such differences are related to weight status, highlighting the potential impact of (over)nutrition on lung lipid metabolism.
  •  
3.
  • Brandsma, Joost, et al. (författare)
  • Stratification of asthma by lipidomic profiling of induced sputum supernatant
  • 2023
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier. - 0091-6749 .- 1097-6825. ; 152:1, s. 117-125
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Asthma is a chronic respiratory disease with significant heterogeneity in its clinical presentation and pathobiology. There is need for improved understanding of respiratory lipid metabolism in asthma patients and its relation to observable clinical features.Objective: We performed a comprehensive, prospective, cross-sectional analysis of the lipid composition of induced sputum supernatant obtained from asthma patients with a range of disease severities, as well as from healthy controls.Methods: Induced sputum supernatant was collected from 211 adults with asthma and 41 healthy individuals enrolled onto the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) study. Sputum lipidomes were characterized by semiquantitative shotgun mass spectrometry and clustered using topologic data analysis to identify lipid phenotypes.Results: Shotgun lipidomics of induced sputum supernatant revealed a spectrum of 9 molecular phenotypes, highlighting not just significant differences between the sputum lipidomes of asthma patients and healthy controls, but also within the asthma patient population. Matching clinical, pathobiologic, proteomic, and transcriptomic data helped inform the underlying disease processes. Sputum lipid phenotypes with higher levels of nonendogenous, cell-derived lipids were associated with significantly worse asthma severity, worse lung function, and elevated granulocyte counts.Conclusion: We propose a novel mechanism of increased lipid loading in the epithelial lining fluid of asthma patients resulting from the secretion of extracellular vesicles by granulocytic inflammatory cells, which could reduce the ability of pulmonary surfactant to lower surface tension in asthmatic small airways, as well as compromise its role as an immune regulator.
  •  
4.
  • Brinkman, Paul, et al. (författare)
  • Identification and prospective stability of electronic nose (eNose)-derived inflammatory phenotypes in patients with severe asthma
  • 2019
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier. - 0091-6749 .- 1097-6825. ; 143:5, s. 1811-1820.e7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Severe asthma is a heterogeneous condition, as shown by independent cluster analyses based on demographic, clinical, and inflammatory characteristics. A next step is to identify molecularly driven phenotypes using “omics” technologies. Molecular fingerprints of exhaled breath are associated with inflammation and can qualify as noninvasive assessment of severe asthma phenotypes.Objectives: We aimed (1) to identify severe asthma phenotypes using exhaled metabolomic fingerprints obtained from a composite of electronic noses (eNoses) and (2) to assess the stability of eNose-derived phenotypes in relation to withinpatient clinical and inflammatory changes.Methods: In this longitudinal multicenter study exhaled breath samples were taken from an unselected subset of adults with severe asthma from the U-BIOPRED cohort. Exhaled metabolites were analyzed centrally by using an assembly of eNoses. Unsupervised Ward clustering enhanced by similarity profile analysis together with K-means clustering was performed. For internal validation, partitioning around medoids and topological data analysis were applied. Samples at 12 to 18 months of prospective follow-up were used to assess longitudinal within-patient stability.Results: Data were available for 78 subjects (age, 55 years [interquartile range, 45-64 years]; 41% male). Three eNosedriven clusters (n = 26/33/19) were revealed, showing differences in circulating eosinophil (P = .045) and neutrophil (P = .017) percentages and ratios of patients using oral corticosteroids (P = .035). Longitudinal within-patient cluster stability was associated with changes in sputum eosinophil percentages (P = .045).Conclusions: We have identified and followed up exhaled molecular phenotypes of severe asthma, which were associated with changing inflammatory profile and oral steroid use. This suggests that breath analysis can contribute to the management of severe asthma.
  •  
5.
  • Emma, Rosalia, et al. (författare)
  • Enhanced oxidative stress in smoking and ex-smoking severe asthma in the U-BIOPRED cohort
  • 2018
  • Ingår i: PLOS ONE. - : Public Library Science. - 1932-6203. ; 13:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxidative stress is believed to be a major driver of inflammation in smoking asthmatics. The U-BIOPRED project recruited a cohort of Severe Asthma smokers/ex-smokers (SAs/ex) and non-smokers (SAn) with extensive clinical and biomarker information enabling characterization of these subjects. We investigated oxidative stress in severe asthma subjects by analysing urinary 8-iso-PGF(2 alpha) and the mRNA-expression of the main pro-oxidant (NOX2; NOSs) and anti-oxidant (SODs; CAT; GPX1) enzymes in the airways of SAs/ex and SAn. All the severe asthma U-BIOPRED subjects were further divided into current smokers with severe asthma (CSA), ex-smokers with severe asthma (ESA) and non-smokers with severe asthma (NSA) to deepen the effect of active smoking. Clinical data, urine and sputum were obtained from severe asthma subjects. A bronchoscopy to obtain bronchial biopsy and brushing was performed in a subset of subjects. The main clinical data were analysed for each subset of subjects (urine-8-iso-PGF(2 alpha); IS-transcriptomics; BB-transcriptomics; BBrtranscriptomics). Urinary 8-iso-PGF(2 alpha) was quantified using mass spectrometry. Sputum, bronchial biopsy and bronchial brushing were processed for mRNA expression microarray analysis. Urinary 8-iso-PGF(2 alpha) was increased in SAs/ex, median (IQR) = 31.7 (24.5 +/- 44.7) ng/mmol creatinine, compared to SAn, median (IQR) = 26.6 (19.6 +/- 36.6) ng/mmol creatinine (p< 0.001), and in CSA, median (IQR) = 34.25 (24.4 +/- 47.7), vs. ESA, median (IQR) = 29.4 (22.3 +/- 40.5), and NSA, median (IQR) = 26.5 (19.6 +/- 16.6) ng/mmol creatinine (p = 0.004). Sputum mRNA expression of NOX2 was increased in SAs/ex compared to SAn (probe sets 203922_PM_s_at fold-change = 1.05 p = 0.006; 203923_PM_s_at fold-change = 1.06, p = 0.003; 233538_PM_s_at fold-change = 1.06, p = 0.014). The mRNA expression of antioxidant enzymes were similar between the two severe asthma cohorts in all airway samples. NOS2 mRNA expression was decreased in bronchial brushing of SAs/ex compared to SAn (fold-change = -1.10; p = 0.029). NOS2 mRNA expression in bronchial brushing correlated with FeNO (Kendal's Tau = 0.535; p< 0.001). From clinical and inflammatory analysis, FeNO was lower in CSA than in ESA in all the analysed subject subsets (p< 0.01) indicating an effect of active smoking. Results about FeNO suggest its clinical limitation, as inflammation biomarker, in severe asthma active smokers. These data provide evidence of greater systemic oxidative stress in severe asthma smokers as reflected by a significant changes of NOX2 mRNA expression in the airways, together with elevated urinary 8-iso-PGF(2 alpha) in the smokers/ex-smokers group.
  •  
6.
  • Lefaudeux, Diane, et al. (författare)
  • U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics
  • 2017
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier BV. - 0091-6749 .- 1097-6825. ; 139:6, s. 1797-1807
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Asthma is a heterogeneous disease in which there is a differential response to asthma treatments. This heterogeneity needs to be evaluated so that a personalized management approach can be provided.OBJECTIVES: We stratified patients with moderate-to-severe asthma based on clinicophysiologic parameters and performed an omics analysis of sputum.METHODS: Partition-around-medoids clustering was applied to a training set of 266 asthmatic participants from the European Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes (U-BIOPRED) adult cohort using 8 prespecified clinic-physiologic variables. This was repeated in a separate validation set of 152 asthmatic patients. The clusters were compared based on sputum proteomics and transcriptomics data.RESULTS: Four reproducible and stable clusters of asthmatic patients were identified. The training set cluster T1 consists of patients with well-controlled moderate-to-severe asthma, whereas cluster T2 is a group of patients with late-onset severe asthma with a history of smoking and chronic airflow obstruction. Cluster T3 is similar to cluster T2 in terms of chronic airflow obstruction but is composed of nonsmokers. Cluster T4 is predominantly composed of obese female patients with uncontrolled severe asthma with increased exacerbations but with normal lung function. The validation set exhibited similar clusters, demonstrating reproducibility of the classification. There were significant differences in sputum proteomics and transcriptomics between the clusters. The severe asthma clusters (T2, T3, and T4) had higher sputum eosinophilia than cluster T1, with no differences in sputum neutrophil counts and exhaled nitric oxide and serum IgE levels.CONCLUSION: Clustering based on clinicophysiologic parameters yielded 4 stable and reproducible clusters that associate with different pathobiological pathways.
  •  
7.
  • Perotin-Collard, Jeanne-Marie, et al. (författare)
  • Subtypes of eosinophilic asthma with discrete gene pathway phenotypes
  • 2019
  • Ingår i: European Respiratory Journal. - : European Respiratory Society Journals. - 0903-1936 .- 1399-3003. ; 54
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Blood eosinophil counts ≥0.3x109/L are used to define Type-2, eosinophilic asthma. However, differential responses to T2 biologics of patients with eosinophilic asthma suggests that this may be a heterogeneous phenotype with subsets driven by different molecular mechanisms.Methods: Blood transcriptomic data, acquired from 99 severe asthmatics from the U-BIOPRED study (62% female, mean age 54 yr, 41% on oral steroids), were clustered by topological data analysis and cluster boundaries defined by the MORSE method. Gene pathway signatures were identified by Ingenuity Pathway Analysis.Results: Analysis revealed 3 clusters with different modulated gene pathways, i.e. molecular phenotypes. Subtype 1 had high IFN-γ, low IL5, low IL13 and low IL17 gene expression, with reduced glucocorticoid-induced gene expression. Subtype 2 had low IFNγ, high IL5, high IL13 and low IL17 gene expression. Subtype 3 had low IFNγ, high IL5, high IL13 and high IL17 gene expression. Pathway analysis suggested a strong steroid response in Subtypes 2 and 3. Clinically, the three clusters were not different in respect of age, gender, prevalence of atopy, blood or sputum eosinophil counts. Subtype 3 was characterized by high neutrophil counts in blood and bronchial epithelium, frequent sinus disease and asthma exacerbations, OCS treatment, low allergic sensitisation and low exhaled NO. Subtype 1 was characterized by high exhaled NO and more frequent IgE therapy.Conclusion: This study suggests that eosinophilic severe asthma (≥0.3x109/L) can be stratified further into 3 subtypes with distinct gene expression profiles that could be developed as molecular diagnostic biomarkers to guide treatment and thereby improve patient outcomes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy