SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hu Xun) "

Sökning: WFRF:(Hu Xun)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Zhao, Xue, et al. (författare)
  • Simultaneous anchoring of Ni nanoparticles and single-atom Ni on BCN matrix promotes efficient conversion of nitrate in water into high-value-added ammonia
  • 2022
  • Ingår i: Chemical Engineering Journal. - : Elsevier. - 1385-8947 .- 1873-3212. ; 433:Part 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochemical synthesis of ammonia driven by clean energy is expected to realize the supply of ammonia for distributed production of industry and agriculture. Here, nickel nanoparticles and nickel in the form of single atoms were simultaneously anchored on the electrochemically active carrier BCN matrix through a structured domain strategy, which realized a high-efficiency, high-value-added, conversion of nitrate in sewage. Specifically, the electrochemical nitrate reduction reaction (NIRR) driven by BCN@Ni in alkaline media achieves an ammonia yield rate as high as 2320.2 μg h−1 cm−2 (at −0.5 V vs RHE), and Faraday efficiency as high as 91.15% (at −0.3 V vs RHE). Even in neutral and acidic media, the ammonia yield rates of NIRR driven by BCN@Ni are as high as 1904.2 μg h−1 cm−2 and 2057.4 μg h−1 cm−2, respectively (at −0.4 V vs RHE). The 15NO3- isotope labeling experiment verified that the recorded ammonia all came from the electrochemical reduction of NO3– on BCN@Ni. Density functional theory (DFT) calculations show that both nano-Ni and single-atom Ni in BCN@Ni have the ability to electrochemically convert NO3– into NH3, and that the addition of BCN can further promote the NIRR on Ni.
  •  
3.
  • Gao, Sanshuang, et al. (författare)
  • Selective voltammetric determination of Cd(II) by using N,S-codoped porous carbon nanofibers
  • 2018
  • Ingår i: Microchimica Acta. - : Springer. - 0026-3672 .- 1436-5073. ; 185
  • Tidskriftsartikel (refereegranskat)abstract
    • Porous carbon nanofibers codoped with nitrogen and sulfur (NFs) were prepared by pyrolysis of trithiocyanuric acid, silica nanospheres and polyacrylonitrile (PAN) followed by electrospinning. The NFs were used to modify a glassy carbon electrode (GCE) which then displayed highly sensitive response to traces of Cd(II). Compared to a bare GCE and a Nafion modified GCE, the GCE modified with codoped NFs shows improved sensitivity for Cd(II) in differential pulse anodic sweep voltammetry. The stripping peak current (typically measured at 0.81 V vs. Ag/AgCl) increases linearly in the 2.0–500 μg·L−1 Cd(II) concentration range. This is attributed to the large surface area (109 m2·g−1), porous structure, and high fraction of heteroatoms (19 at.% of N and 0.75 at.% of S). The method was applied to the determination of Cd(II) in (spiked) tap water where it gave recoveries that ranged between 96% and 103%.
  •  
4.
  • Gao, Sanshuang, et al. (författare)
  • Sensitive and Selective Differential Pulse Voltammetry Detection of Cd(II) and Pb(II) Using Nitrogen-Doped Porous Carbon Nanofiber Film Electrode
  • 2017
  • Ingår i: Journal of the Electrochemical Society. - : Electrochemical Society. - 0013-4651 .- 1945-7111. ; 164:13, s. H967-H974
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon matrix materials are regarded as one of the most important electrode materials for heavy metal detection. But even so, optimization procedures of carbon nanofibers (CNFs) for tracing Cd(II) and Pb(II) remains challenging. Here, zeolitic imidazolate framework (ZIF-8)/polyacrylonitrile (PAN)-derived nitrogen-doped porous carbon nanofibers (N-PCNFs) were investigated as a new electrode material for determining the concentration of Cd(II) and Pb(II). By optimizing electrochemical conditions such as deposition potential, deposition time, pH of buffer solution, and quantity of N-PCNFs loaded on a glassy carbon electrode (GCE), the linear response curves of Cd(II) and Pb(II) could be obtained. Due to the unique structural feature and N content, the N-PCNFs possess excellent detection limits of 0.8 mu g L-1 for Cd(II) and 0.3 mu g L-1 for Pb(II) (S/N = 3). To manifest the practical use of the sensor platform the concentration of Cd(II) and Pb(II) in normal tap and waste water were monitored. According to the ICP-MS results, the calculated recovery (97.0-107%) indicates that N-PCNFs have potential as a candidate material to monitor the concentration of Cd(II) and Pb(II) in practical samples.
  •  
5.
  • Jiang, Ruyuan, et al. (författare)
  • A Facile Electrochemical Sensor Based on PyTS-CNTs for Simultaneous Determination of Cadmium and Lead Ions
  • 2018
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 18:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A simple and easy method was implemented for the contemporary detection of cadmium (Cd2+) and lead (Pb2+) ions using 1,3,6,8-pyrenetetrasulfonic acid sodium salt-functionalized carbon nanotubes nanocomposites (PyTS-CNTs). The morphology and composition of the obtained PyTS-CNTs were characterized using scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS). The experimental results confirmed that the fabricated PyTS-CNTs exhibited good selectivity and sensitivity for metal ion-sensing owing to the insertion of sulfonic acid groups. For Cd2+ and Pb2+, some of the electrochemical sensing parameters were evaluated by varying data such as the PyTS-CNT quantity loaded on the pyrolytic graphite electrode (PGE), pH of the acetate buffer, deposition time, and deposition potential. These parameters were optimized with differential pulse anodic sweeping voltammetry (DPASV). Under the optimal condition, the stripping peak current of the PyTS-CNTs/Nafion/PGE varies linearly with the heavy metal ion concentration, ranging from 1.0 mu g L-1 to 90 mu g L-1 for Cd2+ and from 1.0 mu g L-1 to 110 mu g L-1 for Pb2+. The limits of detection were estimated to be approximately 0.8 mu g L-1 for Cd2+ and 0.02 mu g L-1 for Pb2+. The proposed PyTS CNTs/Nafion/PGE can be used as a rapid, simple, and controllable electrochemical sensor for the determination of toxic Cd2+ and Pb2+.
  •  
6.
  • Jiang, Ruyuan, et al. (författare)
  • Polysulfide/Graphene Nanocomposite Film for Simultaneous Electrochemical Determination of Cadmium and Lead Ions
  • 2018
  • Ingår i: NANO. - : World Scientific. - 1793-2920 .- 1793-7094. ; 13:8
  • Tidskriftsartikel (refereegranskat)abstract
    • An integrative electroanalytical method was developed for detecting Cd2+ and Pb2+ ions in aqueous solutions. Polysulfide/graphene (RGO-S) nanocomposites were prepared and their performance as electrochemical sensors for Cd2+ and Pb2+ was evaluated. The RGO-S nanocomposite was carefully characterized by scanning electron microscopy with energy-dispersive X-ray spectrometry, transmission electron microscopy, and X-ray photoelectron spectroscopy. The as-prepared RGO-S was incorporated into a pyrolytic graphite electrode (RGO-S/PGE) and used for detecting trace amount of Cd2+ and Pb2+ by differential pulse anodic stripping voltammetry. Under optimal conditions, the stripping peak current of RGO-S/PGE varies linearly with heavy metal ion concentration in the ranges 2.0-300 mu g L-1 for Cd2+ and 1.0-300 mu g L-1 for Pb2+. The limits of detection for Cd2+ and Pb2+ were estimated to be about 0.67 mu g L-1 and 0.17 mu g L-1, respectively. The prepared electrochemical heavy-metal-detecting electrode provides good repeatability and reproducibility with high sensitivity, making it a suitable candidate for monitoring Cd2+ and Pb2+ concentrations in aqueous environmental samples.
  •  
7.
  • Qiao, Mengfei, et al. (författare)
  • Ni-Co bimetallic coordination effect for long lifetime rechargeable Zn-air battery
  • 2020
  • Ingår i: Journal of Energy Challenges and Mechanics. - : Elsevier. - 2056-9386. ; 47, s. 146-154
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of bifunctional oxygen electrocatalysts with high efficiency, high stability, and low cost is of great significance to the industrialization of rechargeable Zn–air batteries. A widely accepted view is that the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) follow different catalytic mechanisms, and accordingly they need different active sites for catalysis. Transition metal elements have admirable electronic acceptance ability for coordinating with reactants, and this can weaken the bond energy between reactants, thus promoting the ORR or OER reactions. Herein, the ORR and OER activities of different transition metal supported nitrogen-doped carbon nanotubes were systematically studied and compared. The optimal catalyst for synchronous ORR and OER was obtained by pyrolyzing melamine, cobalt nitrate, and nickel nitrate on carbon nanotubes, called cobalt–nickel supported nitrogen-mixed carbon nanotubes (CoNi–NCNT), which were equipped with two types of high-performance active sites—the Co/Ni–N–C structure for the ORR and CoNi alloy particles for the OER—simultaneously. Remarkably, the optimized CoNi–NCNT exhibited a satisfactory bifunctional catalytic activity for both the ORR and OER. The value of the oxygen electrode activity parameter, ΔE, of CoNi–NCNT was 0.81 V, which surpasses that of catalysts Pt/C and Ir/C, and most of the non-precious metal-based bifunctional electrocatalysts reported in previous literatures. Furthermore, a specially assembled rechargeable Zn–air cell with CoNi–NCNT loaded carbon paper as an air cathode was used to evaluate the practicability. As a result, a superior specific capacity of 744.3 mAh/gZn, a peak power density of 88 mW/cm2, and an excellent rechargeable cycling stability were observed, and these endow the CoNi–NCNT with promising prospects for practical application.
  •  
8.
  • Qin, Danfeng, et al. (författare)
  • An Electrochemical Sensor Based on Green gamma-AlOOH-Carbonated Bacterial Cellulose Hybrids for Simultaneous Determination Trace Levels of Cd(II) and Pb(II) in Drinking Water
  • 2018
  • Ingår i: Journal of the Electrochemical Society. - : ELECTROCHEMICAL SOC INC. - 0013-4651 .- 1945-7111. ; 165:7, s. B328-B334
  • Tidskriftsartikel (refereegranskat)abstract
    • An eco-friendly gamma-AlOOH-carbonated bacterial cellulose (gamma-AlOOH-CBC) hybrids material was fabricated by simple pyrolysis and hydrothermal treatments. The obtained hybrids possess an intrinsic 3D nanofibrous structure decorated with chaff-like gamma-AlOOH particles. Owing to the good adsorption property and conductive, gamma-AlOOH-CBC hybrids were used to modified the glass carbon electrode (GCE) for simultaneous determination of Cd(II) and Pb(II) in aqueous samples by differential pulse anodic stripping voltammetry (DPASV) method. Various parameters affected Cd(II) and Pb(II) measurement were optimized. Under the optimal conditions, the limit of detection (S/N = 3) of the gamma-AlOOH-CBC modified electrode was evaluated to be 0.17 mu g.L-1 for Cd(II) and 0.10 mu g.L-1 for Pb(II) with the linear range of the calibration curves ranged 0.5-250 mu g.L-1 for Cd(II) and Pb(II). Furthermore, the developed electrode was also successfully utilized for monitoring trace Cd(II) and Pb(II) in drinking water samples with satisfactory results.
  •  
9.
  • Yalikun, Nuerbiya, et al. (författare)
  • Bacterial cellulose-based three-dimensional carbon nanofibers for the sensitive and selective determination of uric acid
  • 2018
  • Ingår i: Science of Advanced Materials. - : American Scientific Publishers. - 1947-2935 .- 1947-2943. ; 10:11, s. 1623-1629
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, the interest in the optimization of novel nanomaterials for electrodes preparation has received tremendous attention. This article describe about develop an electrochemical sensor for to detect the uric acid (UA). Firstly, the sensing materials of carbon nanofibers (CNFs) were prepared through an economical approach under freeze-dried, mainly for CNFs were successfully synthesized through carbonized biomass green bacterial cellulose (BC) at 800 degrees C. The obtained CNFs were used to modify the glassy carbon electrode (GCE), and have an excellent electrochemical response towards the UA. Under the optimized condition, the current response of UA at the CNFs/GCE increased also the peak current linearly with the UA concentration, the limitation of detection (LOD) calculated as 0.29 mu M (S/N = 3), revealing the a high sensitivity and an broader analytical range of the as-prepared CNFs/GCE. Finally, the proposed electrochemical sensor can be used for detection of UA in human urine with the satisfactory result.
  •  
10.
  • Yalikun, Nuerbiya, et al. (författare)
  • Synthesis of an iron-nitrogen co-doped ordered mesoporous carbon-silicon nanocomposite as an enhanced electrochemical sensor for sensitive and selective determination of chloramphenicol
  • 2018
  • Ingår i: Colloids and Surfaces B. - : Elsevier. - 0927-7765 .- 1873-4367. ; 172, s. 98-104
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we developed a sensitive electrochemical sensor for the detection of chloramphenicol (CAP). An iron-nitrogen co-doped ordered mesoporous carbon-silicon nanocomposite (Si-Fe/NOMC) was prepared as follows. First, an SBA-15 surface was treated with an iron and nitrogen co-doped carbon framework obtained from the polymerization of ethylenediamine and carbon tetrachloride via the hard templating method. The mixture was then carbonized at a high temperature (900 degrees C). Finally, the Si-Fe/NOMC modified electrode was fabricated, and employed as a high-performance electrochemical sensor to trace the CAP in drug samples using the large surface area of the hetero-atoms iron, nitrogen and silicon co-doped in the porous structure. Cyclic voltammetry and differential pulse voltammetry tests were determine to assess the efficiency of the sensor. Under optimized conditions, the sensor exhibited rapid current response for CAP in a phosphate buffer solution PBS with pH 7.5. The linear concentration of CAP ranged from 1 mu M to 500 mu M, with a limit of detection of 0.03 mu M (S/N = 3). Furthermore, the electrochemical sensor was used to detect CAP in eye drop samples with satisfactory results.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23
Typ av publikation
tidskriftsartikel (22)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (23)
Författare/redaktör
Wågberg, Thomas, 197 ... (10)
Peeters, Petra H (3)
Overvad, Kim (3)
Kaaks, Rudolf (3)
Boeing, Heiner (3)
Trichopoulou, Antoni ... (3)
visa fler...
Norat, Teresa (3)
Riboli, Elio (3)
Joffres, Michel (3)
McKee, Martin (3)
Salomaa, Veikko (3)
Lundqvist, Annamari (3)
Giwercman, Aleksande ... (3)
Wade, Alisha N. (3)
Cooper, Cyrus (3)
Hardy, Rebecca (3)
Sunyer, Jordi (3)
Brenner, Hermann (3)
Claessens, Frank (3)
Craig, Cora L. (3)
Sjostrom, Michael (3)
Adams, Robert (3)
Thijs, Lutgarde (3)
Staessen, Jan A (3)
Baryshnikov, Glib (3)
Ågren, Hans (3)
Farzadfar, Farshad (3)
Geleijnse, Johanna M ... (3)
Guessous, Idris (3)
Jonas, Jost B. (3)
Kasaeian, Amir (3)
Khader, Yousef Saleh (3)
Khang, Young-Ho (3)
Lotufo, Paulo A. (3)
Malekzadeh, Reza (3)
Mensink, Gert B. M. (3)
Mohan, Viswanathan (3)
Nagel, Gabriele (3)
Qorbani, Mostafa (3)
Rivera, Juan A. (3)
Sepanlou, Sadaf G. (3)
Szponar, Lucjan (3)
Alkerwi, Ala'a (3)
Bjertness, Espen (3)
Kengne, Andre P. (3)
McGarvey, Stephen T. (3)
Schutte, Aletta E. (3)
Shiri, Rahman (3)
Topor-Madry, Roman (3)
Branca, Francesco (3)
visa färre...
Lärosäte
Umeå universitet (14)
Uppsala universitet (5)
Linköpings universitet (4)
Chalmers tekniska högskola (3)
Göteborgs universitet (2)
Luleå tekniska universitet (2)
visa fler...
Lunds universitet (2)
Kungliga Tekniska Högskolan (1)
Mälardalens universitet (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (15)
Teknik (4)
Medicin och hälsovetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy