SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Huang S) ;mspu:(conferencepaper)"

Sökning: WFRF:(Huang S) > Konferensbidrag

  • Resultat 1-10 av 118
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aamodt, K., et al. (författare)
  • Alignment of the ALICE Inner Tracking System with cosmic-ray tracks
  • 2010
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 5
  • Konferensbidrag (refereegranskat)abstract
    • ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 mu m in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10(5) charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.
  •  
2.
  • Zhang, S. -N, et al. (författare)
  • Introduction to the high energy cosmic-radiation detection (HERD) facility onboard China's future space station
  • 2017
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads onboard China's Space Station, which is planned for operation starting around 2025 for about 10 years. The main scientific objectives of HERD are searching for signals of dark matter annihilation products, precise cosmic electron (plus positron) spectrum and anisotropy measurements up to 10 TeV, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 7,500 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of six X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side STKs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV and 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10-5; effective geometrical factors of >3 m2sr for electron and diffuse gamma-rays, >2 m2sr for cosmic ray nuclei. R&D is under way for reading out the LYSO signals with optical fiber coupled to image intensified IsCMOS and CALO prototype of 250 LYSO crystals. 
  •  
3.
  • Zhang, S. N., et al. (författare)
  • The high energy cosmic-radiation detection (HERD) facility onboard China's Space Station
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Konferensbidrag (refereegranskat)abstract
    • The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic lighthouse program onboard China's Space Station, which is planned for operation starting around 2020 for about 10 years. The main scientific objectives of HERD are indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 104 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of seven X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side SKTs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10-5; effective geometrical factors of >3 m2sr for electron and diffuse gamma-rays, >2 m2sr for cosmic ray nuclei. R and D is under way for reading out the LYSO signals with optical fiber coupled to image intensified CCD and the prototype of one layer of CALO. 
  •  
4.
  • Negm, N., et al. (författare)
  • Graphene waveguide-integrated thermal infrared emitter
  • 2022
  • Ingår i: Device Research Conference - Conference Digest, DRC. - : Institute of Electrical and Electronics Engineers (IEEE).
  • Konferensbidrag (refereegranskat)abstract
    • Low-cost and easily integrable mid-infrared (MIR) sources are highly desired for photonic integrated circuits. Thermal incandescent MIR sources are widely used. They work by Joule heating, i.e. an electrical current through the emitter causes thermal emission according to Planck's law. Their simple design with only two contact pads makes them integrable with typical optoelectronic components in high-volume production flows. Graphene's emissivity is comparable to common metallic emitters. In contrast to the latter, graphene is transparent at MIR wavelengths, which enables placing large area graphene emitters in the evanescent field of integrated waveguides [1]-[2]. This enhances emission by near-field coupling directly into the waveguide mode, avoiding the mode-mismatch to free space. Here, we present the first experimental demonstration of a graphene emitter placed directly on a photonic waveguide, hence emitting directly into the waveguide mode. 
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Fynbo, H. O. U., et al. (författare)
  • News on C-12 from beta-decay studies
  • 2004
  • Ingår i: Nuclear Physics A. - : Elsevier BV. - 0375-9474. ; 738, s. 59-65
  • Konferensbidrag (refereegranskat)abstract
    • We discuss the importance of the spectroscopic properties of the resonances of C-12 just above the 3alpha-threshold, and review the existing experimental information of this region with emphasis on 0(+) and 2(+) states. A new experimental approach for studying the beta-decays of B-12 and N-12 is presented based on techniques developed in the context of Radioactive beam (rare isotope) physics. Finally preliminary results from an ongoing analysis of two recent experiments are given.
  •  
10.
  • Huang, S. Y., et al. (författare)
  • Observations of Whistler Waves in the Magnetic Reconnection Diffusion Region
  • 2018
  • Ingår i: 2ND URSI ATLANTIC RADIO SCIENCE MEETING (AT-RASC). - : IEEE. - 9789082598735
  • Konferensbidrag (refereegranskat)abstract
    • Whistler waves are believed to play an important role during magnetic reconnection. In this paper, we report the simultaneous occurrence of two types of the whistler waves in the magnetotail reconnection diffusion region. The first type is observed in the pileup region of downstream and propagates away along the field lines to downstream, and is possibly generated by the electron temperature anisotropy at the magnetic equator. The second type is found around the separatrix region and propagates towards the X-line, and is possibly aenerated by the electron beam-driven whistler instability or Cerenkov emission from electron phase-space holes. Our observations of two different types of whistler waves are well consistent with recent kinetic simulations, and suggest that the observed whistler waves are the consequences of magnetic reconnection.Moreover, we statistically investigate the whistler waves in the magnetotail reconnection region, and construct the global distribution and occurrence rate of the whistler waves based on the two-dimensional reconnection model. It is found that the occurrence rate of the whistler waves is large in the separatrix region (113,1B0j>0.4) and pileup region ([B,./Bol<0.2, 161>45'), but very small in the X-line region. The statistical results are well consistent with the case study.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 118

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy