SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Huang Xiao) ;lar1:(cth)"

Sökning: WFRF:(Huang Xiao) > Chalmers tekniska högskola

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
4.
  • Tang, Jinfeng, 1984, et al. (författare)
  • Assessment of heavy metals mobility and correlative recovery and decontamination from MSWI fly ash: Mechanism and hydrometallurgical process evaluation
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 768
  • Tidskriftsartikel (refereegranskat)abstract
    • Fly ash from municipal solid waste incineration (MSWI) enriches many leachable toxic metals which readily migrate into the environment, posing serious risks to the ecosystem and human. In this study, the elements mobility, leaching availability as well as the potential maximum amounts of heavy metals in fly ash were thoroughly evaluated. To decontaminate the toxic elements from resulting fly ash leachates, The aqueous zinc (Zn) was recovered using Cyanex 572, cadmium (Cd) and copper (Cu) were effectively removed through adsorption process by a self-assembled hierarchical hydroxyapatite (HAP) nanostructure. The removal mechanism of Cd, Cu and Zn by leaching, extraction and adsorption was revealed with the results from XRD, ICP-MS and SEM. The results showed that fly ash has a high mobility under maximum availability leaching test (95% of fly ash was dissolved), a recovery rate of 91% for Zn can be obtained using Cyanex 572, and a high adsorption rate (> 95% for both Cu and Cd) was reached using HAP for the pristine fly ash leachate. The outcomes from isothermal and kinetic study revealed that Langmuir isotherm and pseudo-second order model can well describe the Cd and Cu adsorption behavior. Economic assessment suggested that the application of HAP for the removal of Cd and Cu is a technically sound and economically feasible approach. The findings of this study demonstrated that this comprehensive process integrated leaching, solvent extraction and consequential decontamination can be a practical strategy for MSWI fly ash treatment.
  •  
5.
  • Tang, Jinfeng, 1984, et al. (författare)
  • Optimizing critical metals recovery and correlative decontamination from MSWI fly ash: Evaluation of an integrating two-step leaching hydrometallurgical process
  • 2022
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526. ; 368
  • Tidskriftsartikel (refereegranskat)abstract
    • While municipal solid waste incineration (MSWI) fly ash is classified as hazardous waste, it can also serve as an urban mining source for numerous precious metals. Of particular interest are antimony (Sb) and zinc (Zn); the former of which is a strategic and critical metal that is being rapidly depleted, putting society at high risk for supply shortages. In this work, a two-step leaching method for recovering Sb and Zn from MSWI fly ash is proposed. Furthermore, the leaching behavior and adsorption mechanism of Sb in the MSWI fly ash waste stream were also investigated. Results from the first constant pH leaching tests (CPLT) showed that under diluted acidic condition, the maximum amount of Sb released from fly ash was ∼20%. In addition, at pH 4.0, 67% of the fly ash was dissolved, while 79.3% and 12.1% of the Zn and Sb, respectively, were recovered. After optimizing and executing a second Sb leaching procedure (6 M HCl solution at 60 °C), >80% of the Sb was recovered. Thus, the proposed two-step leaching process, consisting of extraction followed by decontamination using a magnetic HAP@CoFe2O4 adsorbent, can eliminate the Sb in fly ash effluent with a removal efficiency >95%. Moreover, this process produces less toxic products and lowers the effluent residue concentration. As such, the two-step process described herein is suggested for Sb and Zn recovery from fly ash; as it not only enables precious metal recovery, but also aids in treating secondary waste streams produced from urban mining.
  •  
6.
  • Xiao, Sen, et al. (författare)
  • The influence of impact speed on chest injury outcome in whole body frontal sled impacts
  • 2020
  • Ingår i: Transport. - : Vilnius Gediminas Technical University. - 1648-4142 .- 1648-3480. ; 35:6, s. 669-678
  • Tidskriftsartikel (refereegranskat)abstract
    • While the seatbelt restraint has significantly improved occupant safety, the protection efficiency still needs further enhance to reduce the consequence of the crash. Influence of seatbelt restraint loading on chest injury under 40 km/h has been tested and documented. However, a comprehensive profiling of the efficiency of restraint systems with various impact speeds has not yet been sufficiently reported. The purpose of this study is to analyse the effect of the seatbelt load-ings on chest injuries at different impact speeds utilizing a high bio-fidelity human body Finite Element (FE) model. Based on the whole-body frontal sled test configuration, the current simulation is setup using a substitute of Post-Mortem Human Subjects (PMHS). Chest injury outcomes from simulations are analysed in terms of design variables, such as seatbelt position parameters and collision speed in a full factorial experimental design. These outcomes are specifically referred to strain-based injury probabilities and four-point chest deflections caused by the change of the parameters. The results indicate that impact speed does influence chest injury outcome. The ribcage injury risk for more than 3 fractured ribs will increase from around 40 to nearly 100% when the impact speed change from 20 to 40 km/h if the seatbelt positioned at the middle-sternum of this study. Great injuries to the chest are mainly caused by the change of inertia, which indicates that chest injuries are greatly affected by the impact speed. Furthermore, the rib fracture risk and chest deflection are nonlin-early correlated with the change of the seatbelt position parameters. The study approach can serve as a reference for seatbelt virtual design. Meanwhile, it also provides basis for the research of chest injury mechanism.
  •  
7.
  • Huang, Tao, et al. (författare)
  • Uplink Tx Switching Application Optimization Based on XGBoost Algorithm
  • 2023
  • Ingår i: Lecture Notes in Electrical Engineering. - Singapore : Springer Nature Singapore. - 1876-1119 .- 1876-1100. ; 996 LNEE, s. 1121-1129
  • Konferensbidrag (refereegranskat)abstract
    • Uplink Tx Switching is an important technology in multi-frequency cooperation, which can effectively improve the uplink capacity of the network by switching the uplink transmitting antenna of the terminal to realize the time-division uplink transmission of two carriers. The paper analyzes the technical principle and implementation of Uplink Tx Switching and compares the characteristics of SUL-based and UL CA-based schemes. Then it introduces an intelligent scheme to turn on Uplink Tx Switching when uplink capacity enhancement is required. The paper uses XGBoost Model to predict the uplink PRB utilization of the serving carriers when the uplink PRB utilization of the serving carrier is higher than the threshold, the target station turns on Uplink Tx Switching while the secondary carrier selection is also based on the uplink PRB utilization of the candidate carriers. Finally, the validity of XGBoost prediction is verified by the actual operation data in Hangzhou.
  •  
8.
  • Liu, Jia Rong, et al. (författare)
  • Effects of second-order wave force on fatigue damage assessment of a tlp-type floating wind turbine
  • 2020
  • Ingår i: Proceedings of the International Offshore and Polar Engineering Conference. - 1098-6189 .- 1555-1792. ; 2020-October, s. 415-422
  • Konferensbidrag (refereegranskat)abstract
    • Resonant and transient responses of a tension leg platform (TLP)-type floating offshore wind turbine can be excited by high-frequency wave forces. This paper investigates the damaging effect of second-order wave forces on structural fatigue in the WindStar TLP system. Dynamic responses in the time domain are analyzed using the program FAST. To explore the mechanisms of different combinations of wind and wave loads inducing damage, five scenarios are considered: wind only, first-order wave only, second-order wave only, joint wind and first-order wave, and joint wind and second-order wave. The results show the dominant effect of second-order waves in tower structural fatigue damage. Additionally, wind and wave coupling becomes stronger under second-order wave loads.
  •  
9.
  • Pan, Kui, et al. (författare)
  • Highly effective transfer of micro-LED pixels to the intermediate and rigid substrate with weak and tunable adhesion by thiol modification
  • 2023
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 15:9, s. 4420-4428
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on transfer printing technology, micro-LED pixels can be transferred to different types and sizes of driving substrates to realize displays with different application scenarios. To achieve a successful transfer, GaN-based micro-LEDs first need to be separated from the original epitaxial substrate. Here, micro-LED pixels (each size 25 μm × 30 μm) on the sapphire substrate were transferred to a flexible semiconductor wafer processing (SWP) tape that is strongly sticky by conventional laser lift-off (LLO) techniques. The pixels on the SWP tape were then transferred by using a sacrificial layer of non-crosslinked oligomeric polystyrene (PS) film onto the intermediate and rigid substrate (IRS) with weak and tunable adhesion by thiol (-SH) modification. The electrode of the micro-LED is Au metal, which forms Au-S bonds with the surface of the IRS to fix the pixels. The rigid substrate helps ensure that the pixel spacing is almost unchanged during the stamp transfer process, and the weak and tunable adhesion facilitates the pixels being picked up by the stamp. The experimental results demonstrate that the pixels can be efficiently transferred to the IRS by LLO and sacrificial layer-assistance, which will provide the possibility of achieving the further transfer of pixels to different types and sizes of driving substrates by a suitable transfer stamp. The transfer process details are discussed, which can provide insights into the transfer of micro-nano devices through polymer sacrificial layers.
  •  
10.
  • Shi, Tian Qiong, et al. (författare)
  • Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system
  • 2018
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer Science and Business Media LLC. - 1432-0614 .- 0175-7598. ; 102:22, s. 9541-9548
  • Forskningsöversikt (refereegranskat)abstract
    • © 2018, The Author(s). The oleaginous yeast Yarrowia lipolytica is widely used for the production of both bulk and fine chemicals, including organic acids, fatty acid-derived biofuels and chemicals, polyunsaturated fatty acids, single-cell proteins, terpenoids, and other valuable products. Consequently, it is becoming increasingly popular for metabolic engineering applications. Multiple gene manipulation tools including URA blast, Cre/LoxP, and transcription activator-like effector nucleases (TALENs) have been developed for metabolic engineering in Y. lipolytica. However, the low efficiency and time-consuming procedures involved in these methods hamper further research. The emergence of the CRISPR/Cas system offers a potential solution for these problems due to its high efficiency, ease of operation, and time savings, which can significantly accelerate the genomic engineering of Y. lipolytica. In this review, we summarize the research progress on the development of CRISPR/Cas systems for Y. lipolytica, including Cas9 proteins and sgRNA expression strategies, as well as gene knock-out/knock-in and repression/activation applications. Finally, the most promising and tantalizing future prospects in this area are highlighted.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy