SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hugelius Gustaf) ;lar1:(liu)"

Sökning: WFRF:(Hugelius Gustaf) > Linköpings universitet

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hugelius, Gustaf, 1980-, et al. (författare)
  • Characterization of Soil Organic Matter in Permafrost Terrain – landscape scale analyses from the European Russian Arctic
  • 2010
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    •  1 INTRODUCTIONSoils of high latitude terrestrial ecosystems are considered key components in the global carbon cycle and hold large stores of Soil Organic Carbon (SOC). The absolute and relative sizes of labile and recalcitrant SOC pools in periglacial terrain are mostly unknown (Kuhry et al. in prep.). Such data has important policy relevance because of its impact on climate change.We sampled soils representative of all major land cover and soil types in discontinuous permafrost terrain, European Russian Arctic. We analyzed the bulk soil characteristics including the soil humic fraction to assess the recalcitrance in organic matter quality in down-depth soil profiles.2 METHODSA comprehensive stratified random soil sampling program was carried out in the Seida area during late summer 2008. From these, we selected nine sites considered representative for the landscape. Active layer and permafrost free upland soils were sampled from dug soil pits with fixed volume corers. Peat plateaus were sampled near thermally eroding edges. Permafrost soils were cored using steel pipes hammered into the frozen peat. Permafrost free fens were sampled using fixed volume Russian corers.Radiocarbon dating was used to determine the SOC ages. The soils were analyzed for dry bulk density, elemental content, and stable isotope composition of organic C and N (δ13C, and δ15N). Further, humic acids were extracted, and the degree of humification of SOM assessed based on A600/C and ∆ log K (Ikeya and Watanabe, 2003).3 RESULTSFigure 1 shows soil organic matter (SOM) characteristics in a peat sequence from one of the nine described sites, a raised bog peat plateau.The peatland first developed as a permafrost-free fen during the Holocene Hypsithermal. Permafrost only aggraded in the late Holocene. Anoxic conditions in the fen and permafrost in peat plateau stages reduced decomposition rates and the degree of humification (A600/C) is relatively constant throughout the peat deposit.Botanical origin is a key factor in determining SOM quality, which is clearly reflected in the elemental ratio (C/N) and isotopic composition of C and N. There are sharp shifts in humification, C/N and isotopic composition at the peat/clay interface.REFERENCESIkeya, K. and Watanabe, A., 2003, Direct expression of an index for the degree of humification of humic acids using organic carbon concentration. Soil Science and Plant Nutrition, 49: 47-53.Kuhry, P., Dorrepaal, E., Hugelius G., Schuur, E.A.G. and Tarnocai C., Potential remobilization of permafrost carbon under future global warming. Permafrost and Periglacial Processes, Submitted.
  •  
2.
  • Hugelius, Gustaf, et al. (författare)
  • Mapping the degree of decomposition and thaw remobilization potential of soil organic matter in discontinuous permafrost terrain
  • 2012
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 117:G2
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] Soil organic matter (SOM) stored in permafrost terrain is a key component in the global carbon cycle, but its composition and lability are largely unknown. We characterize and assess the degree of decomposition of SOM at nine sites representing major land-cover and soil types (including peat deposits) in an area of discontinuous permafrost in the European Russian Arctic. We analyze the elemental and stable isotopic composition of bulk SOM, and the degree of humification and elemental composition of humic acids (HA). The degree of decomposition is low in the O-horizons of mineral soils and peat deposits. In the permafrost free non-peatland soils there is enrichment of13C and 15N, and decrease in bulk C/N ratios indicating more decomposed material with depth. Spectral characterization of HA indicates low humification in O-horizons and peat deposits, but increase in humification in the deeper soil horizons of non-peatland soils, and in mineral horizons underlying peat deposits. GIS based maps indicate that less decomposed OM characteristic of the O-horizon and permafrost peat deposits constitute the bulk of landscape SOM (>70% of landscape soil C). We conclude, however, that permafrost has not been the key environmental factor controlling the current degree of decomposition of SOM in this landscape due to relatively recent permafrost aggradation. In this century, active layer deepening will mainly affect SOM with a relatively high degree of decomposition in deeper mineral soil horizons. Additionally, thawing permafrost in peat plateaus may cause rapid remobilization of less decomposed SOM through thermokarst expansion.
  •  
3.
  • Olefeldt, David, et al. (författare)
  • The Boreal-Arctic Wetland and Lake Dataset (BAWLD)
  • 2021
  • Ingår i: Earth System Science Data. - : Copernicus Gesellschaft MBH. - 1866-3508 .- 1866-3516. ; 13:11, s. 5127-5149
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane emissions from boreal and arctic wetlands, lakes, and rivers are expected to increase in response to warming and associated permafrost thaw. However, the lack of appropriate land cover datasets for scaling field-measured methane emissions to circumpolar scales has contributed to a large uncertainty for our understanding of present-day and future methane emissions. Here we present the BorealArctic Wetland and Lake Dataset (BAWLD), a land cover dataset based on an expert assessment, extrapolated using random forest modelling from available spatial datasets of climate, topography, soils, permafrost conditions, vegetation, wetlands, and surface water extents and dynamics. In BAWLD, we estimate the fractional coverage of five wetland, seven lake, and three river classes within 0.5 x 0.5 degrees grid cells that cover the northern boreal and tundra biomes (17 % of the global land surface). Land cover classes were defined using criteria that ensured distinct methane emissions among classes, as indicated by a co-developed comprehensive dataset of methane flux observations. In BAWLD, wetlands occupied 3.2 x 10(6) km(2) (14 % of domain) with a 95 % confidence interval between 2.8 and 3.8 x 10(6) km(2). Bog, fen, and permafrost bog were the most abundant wetland classes, covering similar to 28 % each of the total wetland area, while the highest-methane-emitting marsh and tundra wetland classes occupied 5 % and 12 %, respectively. Lakes, defined to include all lentic open-water ecosystems regardless of size, covered 1.4 x 10(6) km(2) (6 % of domain). Low-methane-emitting large lakes (>10 km(2)) and glacial lakes jointly represented 78 % of the total lake area, while high-emitting peatland and yedoma lakes covered 18 % and 4 %, respectively. Small (<0.1 km(2)) glacial, peatland, and yedoma lakes combined covered 17 % of the total lake area but contributed disproportionally to the overall spatial uncertainty in lake area with a 95 % confidence interval between 0.15 and 0.38 x 10(6) km(2). Rivers and streams were estimated to cover 0.12 x 10(6) km(2) (0.5 % of domain), of which 8 % was associated with high-methane-emitting headwaters that drain organic-rich landscapes. Distinct combinations of spatially co-occurring wetland and lake classes were identified across the BAWLD domain, allowing for the mapping of "wetscapes" that have characteristic methane emission magnitudes and sensitivities to climate change at regional scales. With BAWLD, we provide a dataset which avoids double-accounting of wetland, lake, and river extents and which includes confidence intervals for each land cover class. As such, BAWLD will be suitable for many hydrological and biogeochemical modelling and upscaling efforts for the northern boreal and arctic region, in particular those aimed at improving assessments of current and future methane emissions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy