SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hugelius Gustaf) ;pers:(Crill Patrick)"

Sökning: WFRF:(Hugelius Gustaf) > Crill Patrick

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hugelius, Gustaf, 1980-, et al. (författare)
  • Characterization of Soil Organic Matter in Permafrost Terrain – landscape scale analyses from the European Russian Arctic
  • 2010
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    •  1 INTRODUCTIONSoils of high latitude terrestrial ecosystems are considered key components in the global carbon cycle and hold large stores of Soil Organic Carbon (SOC). The absolute and relative sizes of labile and recalcitrant SOC pools in periglacial terrain are mostly unknown (Kuhry et al. in prep.). Such data has important policy relevance because of its impact on climate change.We sampled soils representative of all major land cover and soil types in discontinuous permafrost terrain, European Russian Arctic. We analyzed the bulk soil characteristics including the soil humic fraction to assess the recalcitrance in organic matter quality in down-depth soil profiles.2 METHODSA comprehensive stratified random soil sampling program was carried out in the Seida area during late summer 2008. From these, we selected nine sites considered representative for the landscape. Active layer and permafrost free upland soils were sampled from dug soil pits with fixed volume corers. Peat plateaus were sampled near thermally eroding edges. Permafrost soils were cored using steel pipes hammered into the frozen peat. Permafrost free fens were sampled using fixed volume Russian corers.Radiocarbon dating was used to determine the SOC ages. The soils were analyzed for dry bulk density, elemental content, and stable isotope composition of organic C and N (δ13C, and δ15N). Further, humic acids were extracted, and the degree of humification of SOM assessed based on A600/C and ∆ log K (Ikeya and Watanabe, 2003).3 RESULTSFigure 1 shows soil organic matter (SOM) characteristics in a peat sequence from one of the nine described sites, a raised bog peat plateau.The peatland first developed as a permafrost-free fen during the Holocene Hypsithermal. Permafrost only aggraded in the late Holocene. Anoxic conditions in the fen and permafrost in peat plateau stages reduced decomposition rates and the degree of humification (A600/C) is relatively constant throughout the peat deposit.Botanical origin is a key factor in determining SOM quality, which is clearly reflected in the elemental ratio (C/N) and isotopic composition of C and N. There are sharp shifts in humification, C/N and isotopic composition at the peat/clay interface.REFERENCESIkeya, K. and Watanabe, A., 2003, Direct expression of an index for the degree of humification of humic acids using organic carbon concentration. Soil Science and Plant Nutrition, 49: 47-53.Kuhry, P., Dorrepaal, E., Hugelius G., Schuur, E.A.G. and Tarnocai C., Potential remobilization of permafrost carbon under future global warming. Permafrost and Periglacial Processes, Submitted.
  •  
2.
  •  
3.
  • Hugelius, Gustaf, et al. (författare)
  • Mapping the degree of decomposition and thaw remobilization potential of soil organic matter in discontinuous permafrost terrain
  • 2012
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 117:G2
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] Soil organic matter (SOM) stored in permafrost terrain is a key component in the global carbon cycle, but its composition and lability are largely unknown. We characterize and assess the degree of decomposition of SOM at nine sites representing major land-cover and soil types (including peat deposits) in an area of discontinuous permafrost in the European Russian Arctic. We analyze the elemental and stable isotopic composition of bulk SOM, and the degree of humification and elemental composition of humic acids (HA). The degree of decomposition is low in the O-horizons of mineral soils and peat deposits. In the permafrost free non-peatland soils there is enrichment of13C and 15N, and decrease in bulk C/N ratios indicating more decomposed material with depth. Spectral characterization of HA indicates low humification in O-horizons and peat deposits, but increase in humification in the deeper soil horizons of non-peatland soils, and in mineral horizons underlying peat deposits. GIS based maps indicate that less decomposed OM characteristic of the O-horizon and permafrost peat deposits constitute the bulk of landscape SOM (>70% of landscape soil C). We conclude, however, that permafrost has not been the key environmental factor controlling the current degree of decomposition of SOM in this landscape due to relatively recent permafrost aggradation. In this century, active layer deepening will mainly affect SOM with a relatively high degree of decomposition in deeper mineral soil horizons. Additionally, thawing permafrost in peat plateaus may cause rapid remobilization of less decomposed SOM through thermokarst expansion.
  •  
4.
  • Olefeldt, David, et al. (författare)
  • The Boreal-Arctic Wetland and Lake Dataset (BAWLD)
  • 2021
  • Ingår i: Earth System Science Data. - : Copernicus Gesellschaft MBH. - 1866-3508 .- 1866-3516. ; 13:11, s. 5127-5149
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane emissions from boreal and arctic wetlands, lakes, and rivers are expected to increase in response to warming and associated permafrost thaw. However, the lack of appropriate land cover datasets for scaling field-measured methane emissions to circumpolar scales has contributed to a large uncertainty for our understanding of present-day and future methane emissions. Here we present the BorealArctic Wetland and Lake Dataset (BAWLD), a land cover dataset based on an expert assessment, extrapolated using random forest modelling from available spatial datasets of climate, topography, soils, permafrost conditions, vegetation, wetlands, and surface water extents and dynamics. In BAWLD, we estimate the fractional coverage of five wetland, seven lake, and three river classes within 0.5 x 0.5 degrees grid cells that cover the northern boreal and tundra biomes (17 % of the global land surface). Land cover classes were defined using criteria that ensured distinct methane emissions among classes, as indicated by a co-developed comprehensive dataset of methane flux observations. In BAWLD, wetlands occupied 3.2 x 10(6) km(2) (14 % of domain) with a 95 % confidence interval between 2.8 and 3.8 x 10(6) km(2). Bog, fen, and permafrost bog were the most abundant wetland classes, covering similar to 28 % each of the total wetland area, while the highest-methane-emitting marsh and tundra wetland classes occupied 5 % and 12 %, respectively. Lakes, defined to include all lentic open-water ecosystems regardless of size, covered 1.4 x 10(6) km(2) (6 % of domain). Low-methane-emitting large lakes (>10 km(2)) and glacial lakes jointly represented 78 % of the total lake area, while high-emitting peatland and yedoma lakes covered 18 % and 4 %, respectively. Small (<0.1 km(2)) glacial, peatland, and yedoma lakes combined covered 17 % of the total lake area but contributed disproportionally to the overall spatial uncertainty in lake area with a 95 % confidence interval between 0.15 and 0.38 x 10(6) km(2). Rivers and streams were estimated to cover 0.12 x 10(6) km(2) (0.5 % of domain), of which 8 % was associated with high-methane-emitting headwaters that drain organic-rich landscapes. Distinct combinations of spatially co-occurring wetland and lake classes were identified across the BAWLD domain, allowing for the mapping of "wetscapes" that have characteristic methane emission magnitudes and sensitivities to climate change at regional scales. With BAWLD, we provide a dataset which avoids double-accounting of wetland, lake, and river extents and which includes confidence intervals for each land cover class. As such, BAWLD will be suitable for many hydrological and biogeochemical modelling and upscaling efforts for the northern boreal and arctic region, in particular those aimed at improving assessments of current and future methane emissions.
  •  
5.
  • Routh, Joyanto, et al. (författare)
  • Multi-proxy study of soil organic matter dynamics in permafrost peat deposits reveal vulnerability to climate change in the European Russian Arctic
  • 2014
  • Ingår i: Chemical Geology. - : Elsevier BV. - 0009-2541 .- 1872-6836. ; 368, s. 104-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil organic carbon (SOC) in permafrost terrain is vulnerable to climate change. Perennially frozen peat deposits store large amounts of SOC, but we know little about its chemical composition and lability. We used plant macrofossil and biomarker analyses to reconstruct the Holocene paleovegetation and paleoenvironmental changes in two peat plateau profiles from the European Russian Arctic. Peat plateaus are the main stores of permafrost soil C in the region, but during most of the Holocene peats developed as permafrost-free rich fens with woody vegetation, sedges and mosses. Around 2200 cal BP, permafrost aggraded at the site resulting in frost heave and a drastic reduction in peat accumulation under the drier uplifted surface conditions. The permafrost dynamics (aggradation, frost-heave and thaw) ushered changes in plant assemblages and carbon accumulation, and consequently in the biomarker trends too. Detailed biomarker analyses indicate abundant neutral lipids, which follow the general pattern: n-alkanols > sterols >= n-alkanes >= triterpenols. The lignin monomers are not as abundant as the lipids and increase with depth. The selected aliphatic and phenolic compounds are source specific, and they have different degrees of lability, which is useful for tracing the impact of permafrost dynamics (peat accumulation and/or decay associated with thawing). However, common interpretation of biomarker patterns, and perceived hydrological and climate changes, must be applied carefully in permafrost regions. The increased proportion (selective preservation) of n-alkanes and lignin is a robust indicator of cumulative decomposition trajectories, which is mirrored by functional compounds (e. g. n-alkanol, triterpenol, and sterol concentrations) showing opposite trends. The distribution of these compounds follows first order decay kinetics, and concurs with the down core diagenetic changes. In particular, some of the biomarker ratios (e. g. stanol/sterol and higher plant alkane index) seem promising for tracing SOC decomposition despite changes in botanical imprint, and sites spanning across different soil types and locations. Carbon accumulation rate calculated at these sites varies from 18.1 to 31.1 gC m(-2) yr(-1), and it's evident selective preservation, molecular complexity of organic compounds, and freezing conditions enhance the long-term stability of SOC. Further, our results suggest that permafrost dynamics strongly impact the more undecomposed SOC that could be rapidly remobilized through ongoing thermokarst expansion.
  •  
6.
  • Saunois, Marielle, et al. (författare)
  • The Global Methane Budget 2000–2017
  • 2020
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3516 .- 1866-3508. ; 12:3, s. 1561-1623
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations).For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters.Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning.The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy