SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hugelius Gustaf) ;pers:(Gentsch Norman)"

Sökning: WFRF:(Hugelius Gustaf) > Gentsch Norman

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Palmtag, Juri, 1980-, et al. (författare)
  • Controls on the storage of organic carbon in permafrost soil in northern Siberia
  • 2016
  • Ingår i: European Journal of Soil Science. - : Wiley. - 1351-0754 .- 1365-2389. ; 67:4, s. 478-491
  • Tidskriftsartikel (refereegranskat)abstract
    • This research examined soil organic carbon (SOC), total nitrogen (TN) and aboveground phytomass carbon(PhC) stocks in two areas of the Taymyr Peninsula, northern Siberia.We combined field sampling, chemical and14C radiocarbon dating analyses with land cover classifications for landscape-level assessments. The estimatedmean for the 0–100-cm depth SOC stocks was 14.8 and 20.8 kgCm−2 in Ary-Mas and Logata, respectively. Thecorresponding values for TN were 1.0 and 1.3 kgNm−2. On average, about 2% only (range 0–12%) of the totalecosystem C is stored in PhC. In both study areas about 34% of the SOC at 0–100 cm is stored in cryoturbatedpockets, which have formed since at least the early Holocene. The larger carbon/nitrogen (C/N) ratio of thiscryoturbated material indicates that it consists of relatively undecomposed soil organic matter (SOM). Thereare substantial differences in SOC stocks and SOM properties within and between the two study areas, whichemphasizes the need to consider both geomorphology and soil texture in the assessment of landscape-level andregional SOC stocks.Highlights• This research addresses landscape-scale and regional variation in SOC stocks.• Landform and soil texture are taken into account in the analysis.• The contribution of phytomass to total ecosystem C stored is limited.• Large SOC stocks are susceptible to decomposition following permafrost thaw.
  •  
2.
  • Santruckova, Hana, et al. (författare)
  • Significance of dark CO2 fixation in arctic soils
  • 2018
  • Ingår i: Soil Biology and Biochemistry. - : Elsevier BV. - 0038-0717 .- 1879-3428. ; 119, s. 11-21
  • Tidskriftsartikel (refereegranskat)abstract
    • The occurrence of dark fixation of CO2 by heterotrophic microorganisms in soil is generally accepted, but its importance for microbial metabolism and soil organic carbon (C) sequestration is unknown, especially under C limiting conditions. To fill this knowledge gap, we measured dark (CO2)-C-13 incorporation into soil organic matter and conducted a C-13-labelling experiment to follow the C-13 incorporation into phospholipid fatty acids as microbial biomass markers across soil profiles of four tundra ecosystems in the northern circumpolar region, where net primary productivity and thus soil C inputs are low. We further determined the abundance of various carboxylase genes and identified their microbial origin with metagenomics. The microbial capacity for heterotrophic CO2 fixation was determined by measuring the abundance of carboxylase genes and the incorporation of C-13 into soil C following the augmentation of bioavailable C sources. We demonstrate that dark CO2 fixation occurred ubiquitously in arctic tundra soils, with increasing importance in deeper soil horizons, presumably due to increasing C limitation with soil depth. Dark CO2 fixation accounted on average for 0.4, 1.0, 1.1, and 16% of net respiration in the organic, cryoturbated organic, mineral and permafrost horizons, respectively. Genes encoding anaplerotic enzymes of heterotrophic microorganisms comprised the majority of identified carboxylase genes. The genetic potential for dark CO2 fixation was spread over a broad taxonomic range. The results suggest important regulatory function of CO2 fixation in C limited conditions. The measurements were corroborated by modeling the long-term impact of dark CO2 fixation on soil organic matter. Our results suggest that increasing relative CO2 fixation rates in deeper soil horizons play an important role for soil internal C cycling and can, at least in part, explain the isotopic enrichment with soil depth.
  •  
3.
  • Wild, Birgit, et al. (författare)
  • Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called “priming effect” might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy