SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hung Rayjean J.) ;pers:(Caporaso Neil E.)"

Sökning: WFRF:(Hung Rayjean J.) > Caporaso Neil E.

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fanidi, Anouar, et al. (författare)
  • Is high vitamin B12 status a cause of lung cancer?
  • 2019
  • Ingår i: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 145:6, s. 1499-1503
  • Tidskriftsartikel (refereegranskat)abstract
    • Vitamin B supplementation can have side effects for human health, including cancer risk. We aimed to elucidate the role of vitamin B12 in lung cancer etiology via direct measurements of pre‐diagnostic circulating vitamin B12 concentrations in a nested case–control study, complemented with a Mendelian randomization (MR) approach in an independent case–control sample. We used pre‐diagnostic biomarker data from 5183 case–control pairs nested within 20 prospective cohorts, and genetic data from 29,266 cases and 56,450 controls. Exposures included directly measured circulating vitamin B12 in pre‐diagnostic blood samples from the nested case–control study, and 8 single nucleotide polymorphisms associated with vitamin B12 concentrations in the MR study. Our main outcome of interest was increased risk for lung cancer, overall and by histological subtype, per increase in circulating vitamin B12 concentrations. We found circulating vitamin B12 to be positively associated with overall lung cancer risk in a dose response fashion (odds ratio for a doubling in B12 [ORlog2B12] = 1.15, 95% confidence interval (95%CI) = 1.06–1.25). The MR analysis based on 8 genetic variants also indicated that genetically determined higher vitamin B12 concentrations were positively associated with overall lung cancer risk (OR per 150 pmol/L standard deviation increase in B12 [ORSD] = 1.08, 95%CI = 1.00–1.16). Considering the consistency of these two independent and complementary analyses, these findings support the hypothesis that high vitamin B12 status increases the risk of lung cancer.
  •  
2.
  • Zhu, Ying, et al. (författare)
  • Elevated Platelet Count Appears to Be Causally Associated with Increased Risk of Lung Cancer : A Mendelian Randomization Analysis
  • 2019
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research (AACR). - 1055-9965 .- 1538-7755. ; 28:5, s. 935-942
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Platelets are a critical element in coagulation and inflammation, and activated platelets are linked to cancer risk through diverse mechanisms. However, a causal relationship between platelets and risk of lung cancer remains unclear. Methods: We performed single and combined multiple instrumental variable Mendelian randomization analysis by an inverse-weighted method, in addition to a series of sensitivity analyses. Summary data for associations between SNPs and platelet count are from a recent publication that included 48,666 Caucasian Europeans, and the International Lung Cancer Consortium and Transdisciplinary Research in Cancer of the Lung data consisting of 29,266 cases and 56,450 controls to analyze associations between candidate SNPs and lung cancer risk. Results: Multiple instrumental variable analysis incorporating six SNPs showed a 62% increased risk of overall nonsmall cell lung cancer [NSCLC; OR, 1.62; 95% confidence interval (CI), 1.15-2.27; P = 0.005] and a 200% increased risk for small-cell lung cancer (OR, 3.00; 95% CI, 1.27-7.06; P = 0.01). Results showed only a trending association with NSCLC histologic subtypes, which may be due to insufficient sample size and/or weak effect size. A series of sensitivity analysis retained these findings. Conclusions: Our findings suggest a causal relationship between elevated platelet count and increased risk of lung cancer and provide evidence of possible antiplatelet interventions for lung cancer prevention. Impact: These findings provide a better understanding of lung cancer etiology and potential evidence for antiplatelet interventions for lung cancer prevention.
  •  
3.
  • McKay, James D., et al. (författare)
  • Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes
  • 2017
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 49:7, s. 1126-1132
  • Tidskriftsartikel (refereegranskat)abstract
    • Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genomewide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci. The new loci highlight the striking heterogeneity in genetic susceptibility across the histological subtypes of lung cancer, with four loci associated with lung cancer overall and six loci associated with lung adenocarcinoma. Gene expression quantitative trait locus (eQTL) analysis in 1,425 normal lung tissue samples highlights RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer.
  •  
4.
  • Rosenberger, Albert, et al. (författare)
  • Gene–gene interaction of AhR with and within the Wnt cascade affects susceptibility to lung cancer
  • 2022
  • Ingår i: European Journal of Medical Research. - : BioMed Central (BMC). - 0949-2321 .- 2047-783X. ; 27:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Aberrant Wnt signalling, regulating cell development and stemness, influences the development of many cancer types. The Aryl hydrocarbon receptor (AhR) mediates tumorigenesis of environmental pollutants. Complex interaction patterns of genes assigned to AhR/Wnt-signalling were recently associated with lung cancer susceptibility.Aim: To assess the association and predictive ability of AhR/Wnt-genes with lung cancer in cases and controls of European descent.Methods: Odds ratios (OR) were estimated for genomic variants assigned to the Wnt agonist and the antagonistic genes DKK2, DKK3, DKK4, FRZB, SFRP4 and Axin2. Logistic regression models with variable selection were trained, validated and tested to predict lung cancer, at which other previously identified SNPs that have been robustly associated with lung cancer risk could also enter the model. Furthermore, decision trees were created to investigate variant × variant interaction. All analyses were performed for overall lung cancer and for subgroups.Results: No genome-wide significant association of AhR/Wnt-genes with overall lung cancer was observed, but within the subgroups of ever smokers (e.g., maker rs2722278 SFRP4; OR = 1.20; 95% CI 1.13–1.27; p = 5.6 × 10–10) and never smokers (e.g., maker rs1133683 Axin2; OR = 1.27; 95% CI 1.19–1.35; p = 1.0 × 10–12). Although predictability is poor, AhR/Wnt-variants are unexpectedly overrepresented in optimized prediction scores for overall lung cancer and for small cell lung cancer. Remarkably, the score for never-smokers contained solely two AhR/Wnt-variants. The optimal decision tree for never smokers consists of 7 AhR/Wnt-variants and only two lung cancer variants.Conclusions: The role of variants belonging to Wnt/AhR-pathways in lung cancer susceptibility may be underrated in main-effects association analysis. Complex interaction patterns in individuals of European descent have moderate predictive capacity for lung cancer or subgroups thereof, especially in never smokers.
  •  
5.
  • Carreras-Torres, Robert, et al. (författare)
  • Obesity, metabolic factors and risk of different histological types of lung cancer : a Mendelian randomization study
  • 2017
  • Ingår i: PLOS ONE. - : Public library science. - 1932-6203. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. Methods and findings: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01-1.43] and for small cell lung cancer (OR [95% CI] = 1.52 [1.15-2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m(2)]), but not for adenocarcinoma (OR [95% CI] = 0.93 [0.79-1.08]) (P-heterogeneity = 4.3x10(-3)). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10(-3)), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95% CI] = 0.90 [0.84-0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95% CI] = 1.63 [1.25-2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. Conclusions: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior.
  •  
6.
  • Kachuri, Linda, et al. (författare)
  • Fine mapping of chromosome 5p15.33 based on a targeted deep sequencing and high density genotyping identifies novel lung cancer susceptibility loci
  • 2016
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 37:1, s. 96-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosome 5p15.33 has been identified as a lung cancer susceptibility locus, however the underlying causal mechanisms were not fully elucidated. Previous fine-mapping studies of this locus have relied on imputation or investigated a small number of known, common variants. This study represents a significant advance over previous research by investigating a large number of novel, rare variants, as well as their underlying mechanisms through telomere length. Variants for this fine-mapping study were identified through a targeted deep sequencing (average depth of coverage greater than 4000x) of 576 individuals. Subsequently, 4652 SNPs, including 1108 novel SNPs, were genotyped in 5164 cases and 5716 controls of European ancestry. After adjusting for known risk loci, rs2736100 and rs401681, we identified a new, independent lung cancer susceptibility variant in LPCAT1: rs139852726 (OR = 0.46, P = 4.73x10(-9)), and three new adenocarcinoma risk variants in TERT: rs61748181 (OR = 0.53, P = 2.64x10(-6)), rs112290073 (OR = 1.85, P = 1.27x10(-5)), rs138895564 (OR = 2.16, P = 2.06x10(-5); among young cases, OR = 3.77, P = 8.41x10(-4)). In addition, we found that rs139852726 (P = 1.44x10(-3)) was associated with telomere length in a sample of 922 healthy individuals. The gene-based SKAT-O analysis implicated TERT as the most relevant gene in the 5p15.33 region for adenocarcinoma (P = 7.84x10(-7)) and lung cancer (P = 2.37x10(-5)) risk. In this largest fine-mapping study to investigate a large number of rare and novel variants within 5p15.33, we identified novel lung and adenocarcinoma susceptibility loci with large effects and provided support for the role of telomere length as the potential underlying mechanism.
  •  
7.
  • Wang, Yuzhuo, et al. (författare)
  • Association Analysis of Driver Gene-Related Genetic Variants Identified Novel Lung Cancer Susceptibility Loci with 20,871 Lung Cancer Cases and 15,971 Controls
  • 2020
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 29:7, s. 1423-1429
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A substantial proportion of cancer driver genes (CDG) are also cancer predisposition genes. However, the associations between genetic variants in lung CDGs and the susceptibility to lung cancer have rarely been investigated.Methods: We selected expression-related single-nucleotide polymorphisms (eSNP) and nonsynonymous variants of lung CDGs, and tested their associations with lung cancer risk in two large-scale genome-wide association studies (20,871 cases and 15,971 controls of European descent). Conditional and joint association analysis was performed to identify independent risk variants. The associations of independent risk variants with somatic alterations in lung CDGs or recurrently altered pathways were investigated using data from The Cancer Genome Atlas (TCGA) project.Results: We identified seven independent SNPs in five lung CDGs that were consistently associated with lung cancer risk in discovery (P < 0.001) and validation (P < 0.05) stages. Among these loci, rs78062588 in TPM3 (1q21.3) was a new lung cancer susceptibility locus (OR = 0.86, P = 1.65 x 10(-6)). Subgroup analysis by histologic types further identified nine lung CDGs. Analysis of somatic alterations found that in lung adenocarcinomas, rs78062588[C] allele (TPM3 in 1q21.3) was associated with elevated somatic copy number of TPM3 (OR = 1.16, P = 0.02). In lung adenocarcinomas, rs1611182 (HLA-A in 6p22.1) was associated with truncation mutations of the transcriptional misregulation in cancer pathway (OR = 0.66, P = 1.76 x 10(-3)).Conclusions: Genetic variants can regulate functions of lung CDGs and influence lung cancer susceptibility. Impact: Our findings might help unravel biological mechanisms underlying lung cancer susceptibility.
  •  
8.
  • Wang, Yufei, et al. (författare)
  • Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer
  • 2014
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 46:7, s. 736-741
  • Tidskriftsartikel (refereegranskat)abstract
    • We conducted imputation to the 1000 Genomes Project of four genome-wide association studies of lung cancer in populations of European ancestry (11,348 cases and 15,861 controls) and genotyped an additional 10,246 cases and 38,295 controls for follow-up. We identified large-effect genome-wide associations for squamous lung cancer with the rare variants BRCA2 p.Lys3326X (rs11571833, odds ratio (OR) = 2.47, P = 4.74 x 10(-20)) and CHEK2 p.Ile157Thr (rs17879961, OR = 0.38, P = 1.27 x 10(-13)). We also showed an association between common variation at 3q28 (TP63, rs13314271, OR = 1.13, P = 7.22 x 10(-10)) and lung adenocarcinoma that had been previously reported only in Asians. These findings provide further evidence for inherited genetic susceptibility to lung cancer and its biological basis. Additionally, our analysis demonstrates that imputation can identify rare disease-causing variants with substantive effects on cancer risk from preexisting genome-wide association study data.
  •  
9.
  • Zhao, Xiaoyu, et al. (författare)
  • Identification of genetically predicted DNA methylation markers associated with non–small cell lung cancer risk among 34,964 cases and 448,579 controls
  • 2023
  • Ingår i: Cancer. - : John Wiley & Sons. - 0008-543X .- 1097-0142.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Although the associations between genetic variations and lung cancer risk have been explored, the epigenetic consequences of DNA methylation in lung cancer development are largely unknown. Here, the genetically predicted DNA methylation markers associated with non–small cell lung cancer (NSCLC) risk by a two-stage case-control design were investigated.Methods: The genetic prediction models for methylation levels based on genetic and methylation data of 1595 subjects from the Framingham Heart Study were established. The prediction models were applied to a fixed-effect meta-analysis of screening data sets with 27,120 NSCLC cases and 27,355 controls to identify the methylation markers, which were then replicated in independent data sets with 7844 lung cancer cases and 421,224 controls. Also performed was a multi-omics functional annotation for the identified CpGs by integrating genomics, epigenomics, and transcriptomics and investigation of the potential regulation pathways.Results: Of the 29,894 CpG sites passing the quality control, 39 CpGs associated with NSCLC risk (Bonferroni-corrected p ≤ 1.67 × 10−6) were originally identified. Of these, 16 CpGs remained significant in the validation stage (Bonferroni-corrected p ≤ 1.28 × 10−3), including four novel CpGs. Multi-omics functional annotation showed nine of 16 CpGs were potentially functional biomarkers for NSCLC risk. Thirty-five genes within a 1-Mb window of 12 CpGs that might be involved in regulatory pathways of NSCLC risk were identified.Conclusions: Sixteen promising DNA methylation markers associated with NSCLC were identified. Changes of the methylation level at these CpGs might influence the development of NSCLC by regulating the expression of genes nearby.Plain Language Summary: The epigenetic consequences of DNA methylation in lung cancer development are still largely unknown. This study used summary data of large-scale genome-wide association studies to investigate the associations between genetically predicted levels of methylation biomarkers and non–small cell lung cancer risk at the first time. This study looked at how well larotrectinib worked in adult patients with sarcomas caused by TRK fusion proteins. These findings will provide a unique insight into the epigenetic susceptibility mechanisms of lung cancer.
  •  
10.
  • Carreras-Torres, Robert, et al. (författare)
  • The causal relevance of body mass index in different histological types of lung cancer : a Mendelian randomization study
  • 2016
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Body mass index (BMI) is inversely associated with lung cancer risk in observational studies, even though it increases the risk of several other cancers, which could indicate confounding by tobacco smoking or reverse causality. We used the two-sample Mendelian randomization (MR) approach to circumvent these limitations of observational epidemiology by constructing a genetic instrument for BMI, based on results from the GIANT consortium, which was evaluated in relation to lung cancer risk using GWAS results on 16,572 lung cancer cases and 21,480 controls. Results were stratified by histological subtype, smoking status and sex. An increase of one standard deviation (SD) in BMI (4.65 Kg/m(2)) raised the risk for lung cancer overall (OR = 1.13; P = 0.10). This was driven by associations with squamous cell (SQ) carcinoma (OR = 1.45; P = 1.2 × 10(-3)) and small cell (SC) carcinoma (OR = 1.81; P = 0.01). An inverse trend was seen for adenocarcinoma (AD) (OR = 0.82; P = 0.06). In stratified analyses, a 1 SD increase in BMI was inversely associated with overall lung cancer in never smokers (OR = 0.50; P = 0.02). These results indicate that higher BMI may increase the risk of certain types of lung cancer, in particular SQ and SC carcinoma.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy