SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hydomako R.) "

Sökning: WFRF:(Hydomako R.)

  • Resultat 1-10 av 13
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andresen, G. B., et al. (författare)
  • Evaporative Cooling of Antiprotons to Cryogenic Temperatures
  • 2010
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 105:1, s. 013003-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9 K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.
  •  
2.
  • Andresen, G. B., et al. (författare)
  • Search for trapped antihydrogen
  • 2011
  • Ingår i: Physics Letters B. - 0370-2693 .- 1873-2445. ; 695:1-4, s. 95-104
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 107 antiprotons with 1.3ï¿œ109 positrons to produce 6ï¿œ105 antihydrogen atoms, we have identified six antiproton annihilation events that are consistent with the release of trapped antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts, is incompatible with this observation at a significance of 5.6 sigma. Extensive simulations predict that an alternative source of annihilations, the escape of mirror-trapped antiprotons, is highly unlikely, though this possibility has not yet been ruled out experimentally.
  •  
3.
  • Charlton, M, et al. (författare)
  • Antiparticle sources for antihydrogen production and trapping
  • 2011
  • Ingår i: Journal of Physics: Conference Series. ; 262, s. 012001-
  • Tidskriftsartikel (refereegranskat)abstract
    • Sources of positrons and antiprotons that are currently used for the formation of antihydrogen with low kinetic energies are reviewed, mostly in the context of the ALPHA collaboration and its predecessor ATHENA. The experiments were undertaken at the Antiproton Decelerator facility, which is located at CERN. Operations performed on the clouds of antiparticles to facilitate their mixing to produce antihydrogen are described. These include accumulation, cooling and manipulation. The formation of antihydrogen and some of the characteristics of the anti-atoms that are created are discussed. Prospects for trapping antihydrogen in a magnetic minimum trap, as envisaged by the ALPHA collaboration, are reviewed.
  •  
4.
  • Madsen, N, et al. (författare)
  • Search for trapped antihydrogen in ALPHA
  • 2011
  • Ingår i: Canadian journal of physics (Print). - 0008-4204 .- 1208-6045. ; 89:1, s. 7-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Antihydrogen spectroscopy promises precise tests of the symmetry of matter and antimatter, and can possibly offer new insights into the baryon asymmetry of the universe. Antihydrogen is, however, difficult to synthesize and is produced only in small quantities. The ALPHA collaboration is therefore pursuing a path towards trapping cold antihydrogen to permit the use of precision atomic physics tools to carry out comparisons of antihydrogen and hydrogen. ALPHA has addressed these challenges. Control of the plasma sizes has helped to lower the influence of the multipole field used in the neutral atom trap, and thus lowered the temperature of the created atoms. Finally, the first systematic attempt to identify trapped antihydrogen in our system is discussed. This discussion includes special techniques for fast release of the trapped anti-atoms, as well as a silicon vertex detector to identify antiproton annihilations. The silicon detector reduces the background of annihilations, including background from antiprotons that can be mirror trapped in the fields of the neutral atom trap. A description of how to differentiate between these events and those resulting from trapped antihydrogen atoms is also included.
  •  
5.
  • Van Der Werf, D. P., et al. (författare)
  • Antimatter transport processes
  • 2010
  • Ingår i: AAPS Journal. - 1550-7416 .- 1550-7416. ; 257:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A comparison of the 1S-2S transitions of hydrogen and antihydrogen will yield a stringent test of CPT conservation. Necessarily, the antihydrogen atoms need to be trapped to perform high precision spectroscopy measurements. Therefore, an approximately 0.75 T deep neutral atom trap, equivalent to about 0.5 K for ground state (anti)hydrogen atoms, has been superimposed on a Penning-Malmberg trap in which the anti-atoms are formed. The antihydrogen atoms are produced following a number of steps. A bunch of antiprotons from the CERN Antiproton Decelerator is caught in a Penning-Malmberg trap and subsequently sympathetically cooled and then compressed using rotating wall electric fields. A positron plasma, formed in a separate accumulator, is transported to the main system and also compressed. Antihydrogen atoms are then formed by mixing the antiprotons and positrons. The velocity of the anti-atoms, and their binding energies, will strongly depend on the initial conditions of the constituent particles, for example their temperatures and densities, and on the details of the mixing process. In this paper the complete lifecycle of antihydrogen atoms will be presented, starting with the production of the constituent antiparticles and the description of the manipulations necessary to prepare them appropriately for antihydrogen formation. The latter will also be described, as will the possible fates of the anti-atoms.
  •  
6.
  • Amole, C., et al. (författare)
  • The ALPHA antihydrogen trapping apparatus
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - 0168-9002 .- 1872-9576. ; 735, s. 319-340
  • Tidskriftsartikel (refereegranskat)abstract
    • The ALPHA collaboration, based at CERN, has recently succeeded in confining cold antihydrogen atoms in a magnetic minimum neutral atom trap and has performed the first study of a resonant transition of the anti-atoms. The ALPHA apparatus will be described herein, with emphasis on the structural aspects, diagnostic methods and techniques that have enabled antihydrogen trapping and experimentation to be achieved.
  •  
7.
  • Andresen, G. B., et al. (författare)
  • Antihydrogen annihilation reconstruction with the ALPHA silicon detector
  • 2012
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - 0168-9002 .- 1872-9576. ; 684, s. 73-81
  • Tidskriftsartikel (refereegranskat)abstract
    • The ALPHA experiment has succeeded in trapping antihydrogen, a major milestone on the road to spectroscopic comparisons of antihydrogen with hydrogen. An annihilation vertex detector, which determines the time and position of antiproton annihilations, has been central to this achievement. This detector, an array of double-sided silicon microstrip detector modules arranged in three concentric cylindrical tiers, is sensitive to the passage of charged particles resulting from antiproton annihilation. This article describes the method used to reconstruct the annihilation location and to distinguish the annihilation signal from the cosmic ray background. Recent experimental results using this detector are outlined.
  •  
8.
  • Andresen, G. B., et al. (författare)
  • Confinement of antihydrogen for 1,000 seconds
  • 2011
  • Ingår i: Nature Physics. - 1745-2473 .- 1745-2481. ; 7:7, s. 558-564
  • Tidskriftsartikel (refereegranskat)abstract
    • Atoms made of a particle and an antiparticle are unstable, usually surviving less than a microsecond. Antihydrogen, made entirely of antiparticles, is believed to be stable, and it is this longevity that holds the promise of precision studies of matter-antimatter symmetry. We have recently demonstrated trapping of antihydrogen atoms by releasing them after a confinement time of 172 ms. A critical question for future studies is: how long can anti-atoms be trapped? Here, we report the observation of anti-atom confinement for 1,000 s, extending our earlier results by nearly four orders of magnitude. Our calculations indicate that most of the trapped anti-atoms reach the ground state. Further, we report the first measurement of the energy distribution of trapped antihydrogen, which, coupled with detailed comparisons with simulations, provides a key tool for the systematic investigation of trapping dynamics. These advances open up a range of experimental possibilities, including precision studies of charge-parity-time reversal symmetry and cooling to temperatures where gravitational effects could become apparent.
  •  
9.
  • Butler, E., et al. (författare)
  • Towards antihydrogen trapping and spectroscopy at ALPHA
  • 2011
  • Ingår i: Hyperfine Interactions. - 0304-3843 .- 1572-9540. ; 199:1, s. 39-48
  • Tidskriftsartikel (refereegranskat)abstract
    • Spectroscopy of antihydrogen has the potential to yield high-precision tests of the CPT theorem and shed light on the matter-antimatter imbalance in the Universe. The ALPHA antihydrogen trap at CERN’s Antiproton Decelerator aims to prepare a sample of antihydrogen atoms confined in an octupole-based Ioffe trap and to measure the frequency of several atomic transitions. We describe our techniques to directly measure the antiproton temperature and a new technique to cool them to below 10 K. We also show how our unique position-sensitive annihilation detector provides us with a highly sensitive method of identifying antiproton annihilations and effectively rejecting the cosmic-ray background.
  •  
10.
  • Amole, C., et al. (författare)
  • Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap
  • 2012
  • Ingår i: New Journal of Physics. - 1367-2630 .- 1367-2630. ; 14, s. 015010-
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilate. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antiproton and antihydrogen trajectories in this magnetic geometry, and reconstruct the antihydrogen energy distribution from the measured annihilation time history.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
  • [1]2Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy