SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Igic Boris) "

Search: WFRF:(Igic Boris)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kattge, Jens, et al. (author)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • In: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Journal article (peer-reviewed)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Vallejo-Marin, Mario, et al. (author)
  • Recurrent modification of floral morphology in heterantherous Solanum reveals a parallel shift in reproductive strategy
  • 2014
  • In: Philosophical Transactions of the Royal Society of London. Biological Sciences. - 0962-8436 .- 1471-2970. ; 369:1649, s. 20130256-20130256
  • Journal article (peer-reviewed)abstract
    • Floral morphology determines the pattern of pollen transfer within and between individuals. In hermaphroditic species, the spatial arrangement of sexual organs influences the rate of self-pollination as well as the placement of pollen in different areas of the pollinator's body. Studying the evolutionary modification of floral morphology in closely related species offers an opportunity to investigate the causes and consequences of floral variation. Here, we investigate the recurrent modification of flower morphology in three closely related pairs of taxa in Solanum section Androceras (Solanaceae), a group characterized by the presence of two morphologically distinct types of anthers in the same flower (heteranthery). We use morphometric analyses of plants grown in a common garden to characterize and compare the changes in floral morphology observed in parallel evolutionary transitions from relatively larger to smaller flowers. Our results indicate that the transition to smaller flowers is associated with a reduction in the spatial separation of anthers and stigma, changes in the allometric relationships among floral traits, shifts in pollen allocation to the two anther morphs and reduced pollen : ovule ratios. We suggest that floral modification in this group reflects parallel evolution towards increased self-fertilization and discuss potential selective scenarios that may favour this recurrent shift in floral morphology and function.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view