SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ikeda Masashi) "

Sökning: WFRF:(Ikeda Masashi)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barack, Leor, et al. (författare)
  • Black holes, gravitational waves and fundamental physics : a roadmap
  • 2019
  • Ingår i: Classical and quantum gravity. - : IOP Publishing. - 0264-9381 .- 1361-6382. ; 36:14
  • Forskningsöversikt (refereegranskat)abstract
    • The grand challenges of contemporary fundamental physics dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'.
  •  
2.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
3.
  • Lin, Xue, et al. (författare)
  • Controlled release of matrix metalloproteinase 1 with or without skeletal myoblasts transplantation improves cardiac function of rat hearts with chronic myocardial infarction.
  • 2009
  • Ingår i: Tissue engineering. Part A. - : Mary Ann Liebert Inc. - 1937-335X .- 1937-3341. ; 15:9, s. 2699-706
  • Tidskriftsartikel (refereegranskat)abstract
    • Skeletal myoblast transplantation has been applied clinically for severe ischemic cardiomyopathy. Matrix metalloproteinase 1 (MMP-1) reduces fibrosis and prevents the progress of heart failure. We hypothesized that MMP-1 administration to the infarct area enhances the efficacy of skeletal myoblast transplantation. The controlled release of MMP-1 improved cardiac functions of rats with chronic myocardiac infarction with or without transplantation of skeletal myoblasts. Improvement in cardiac function and small fibrotic area inside the infarcted area were observed compared with those of myoblast transplantation. In conclusion, controlled release of MMP-1 was effective in cardioprotection in postmyocardial infarction although the combination with cell transplantation showed the similar effect.
  •  
4.
  • Sonderby, Ida E., et al. (författare)
  • Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia
  • 2020
  • Ingår i: Molecular Psychiatry. - : Nature Publishing Group. - 1359-4184 .- 1476-5578. ; 25:3, s. 584-602
  • Tidskriftsartikel (refereegranskat)abstract
    • Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = −0.71 to −1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = −0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10−6, 1.7 × 10−9, 3.5 × 10−12 and 1.0 × 10−4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.
  •  
5.
  • Sønderby, Ida E., et al. (författare)
  • 1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans
  • 2021
  • Ingår i: Translational Psychiatry. - : Nature Publishing Group. - 2158-3188. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriers-the latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function.
  •  
6.
  • Uno, Kaname, et al. (författare)
  • Significance of platinum distribution to predict platinum resistance in ovarian cancer after platinum treatment in neoadjuvant chemotherapy
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Most patients with ovarian cancer experience recurrence and develop resistance to platinum-based agents. The diagnosis of platinum resistance based on the platinum-free interval is not always accurate and timely in clinical settings. Herein, we used laser ablation inductively coupled plasma mass spectrometry to visualize the platinum distribution in the ovarian cancer tissues at the time of interval debulking surgery after neoadjuvant chemotherapy in 27patients with advanced high-grade serous ovarian cancer. Two distinct patterns of platinum distribution were observed. Type A (n = 16): platinum accumulation at the adjacent stroma but little in the tumor; type B (n = 11): even distribution of platinum throughout the tumor and adjacent stroma. The type A patients treated post-surgery with platinum-based adjuvant chemotherapy showed significantly shorter periods of recurrence after the last platinum-based chemotherapy session (p = 0.020) and were diagnosed with “platinum-resistant recurrence”. Moreover, type A was significantly correlated with worse prognosis (p = 0.031). Post-surgery treatment with non-platinum-based chemotherapy could be effective for the patients classified as type A. Our findings indicate that the platinum resistance can be predicted prior to recurrence, based on the platinum distribution; this could contribute to the selection of more appropriate adjuvant chemotherapy, which may lead to improves prognoses.
  •  
7.
  • van der Meer, Dennis, et al. (författare)
  • Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition
  • 2020
  • Ingår i: JAMA psychiatry. - : American Medical Association (AMA). - 2168-6238 .- 2168-622X. ; 77:4, s. 420-430
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Recurrent microdeletions and duplications in the genomic region 15q11.2 between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders. These structural variants are present in 0.5% to 1.0% of the population, making 15q11.2 BP1-BP2 the site of the most prevalent known pathogenic copy number variation (CNV). It is unknown to what extent this CNV influences brain structure and affects cognitive abilities.Objective: To determine the association of the 15q11.2 BP1-BP2 deletion and duplication CNVs with cortical and subcortical brain morphology and cognitive task performance.Design, Setting, and Participants: In this genetic association study, T1-weighted brain magnetic resonance imaging were combined with genetic data from the ENIGMA-CNV consortium and the UK Biobank, with a replication cohort from Iceland. In total, 203 deletion carriers, 45 247 noncarriers, and 306 duplication carriers were included. Data were collected from August 2015 to April 2019, and data were analyzed from September 2018 to September 2019.Main Outcomes and Measures: The associations of the CNV with global and regional measures of surface area and cortical thickness as well as subcortical volumes were investigated, correcting for age, age2, sex, scanner, and intracranial volume. Additionally, measures of cognitive ability were analyzed in the full UK Biobank cohort.Results: Of 45 756 included individuals, the mean (SD) age was 55.8 (18.3) years, and 23 754 (51.9%) were female. Compared with noncarriers, deletion carriers had a lower surface area (Cohen d = -0.41; SE, 0.08; P = 4.9 × 10-8), thicker cortex (Cohen d = 0.36; SE, 0.07; P = 1.3 × 10-7), and a smaller nucleus accumbens (Cohen d = -0.27; SE, 0.07; P = 7.3 × 10-5). There was also a significant negative dose response on cortical thickness (β = -0.24; SE, 0.05; P = 6.8 × 10-7). Regional cortical analyses showed a localization of the effects to the frontal, cingulate, and parietal lobes. Further, cognitive ability was lower for deletion carriers compared with noncarriers on 5 of 7 tasks.Conclusions and Relevance: These findings, from the largest CNV neuroimaging study to date, provide evidence that 15q11.2 BP1-BP2 structural variation is associated with brain morphology and cognition, with deletion carriers being particularly affected. The pattern of results fits with known molecular functions of genes in the 15q11.2 BP1-BP2 region and suggests involvement of these genes in neuronal plasticity. These neurobiological effects likely contribute to the association of this CNV with neurodevelopmental disorders.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (6)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (7)
Författare/redaktör
Agartz, Ingrid (4)
Brouwer, Rachel M (4)
Westlye, Lars T (4)
Andreassen, Ole A (4)
Andersson, Micael (4)
de Geus, Eco J. C. (4)
visa fler...
Martin, Nicholas G. (4)
Boomsma, Dorret I. (4)
van der Meer, Dennis (4)
Djurovic, Srdjan (4)
Cichon, Sven (4)
Hashimoto, Ryota (4)
Schofield, Peter R (4)
Le Hellard, Stephani ... (4)
Ames, David (4)
Hottenga, Jouke-Jan (4)
Jahanshad, Neda (4)
Crespo-Facorro, Bene ... (4)
Tordesillas-Gutierre ... (4)
Schork, Andrew J (4)
Teumer, Alexander (4)
Desrivieres, Sylvane (4)
Schumann, Gunter (4)
Armstrong, Nicola J. (4)
Brodaty, Henry (4)
de Zubicaray, Greig ... (4)
Donohoe, Gary (4)
Ehrlich, Stefan (4)
Espeseth, Thomas (4)
Fisher, Simon E. (4)
Fukunaga, Masaki (4)
Ching, Christopher R ... (3)
Thompson, Paul M (3)
Stefansson, Kari (3)
Johansson, Stefan (3)
Haavik, Jan (3)
Kaufmann, Tobias (3)
Thalamuthu, Anbupala ... (3)
Hoffmann, Per (3)
Jacquemont, Sebastie ... (3)
Nyberg, Lars, 1966- (3)
Stefánsson, Hreinn (3)
Groenewold, Nynke A (3)
Stein, Dan J (3)
Sachdev, Perminder S ... (3)
Medland, Sarah E (3)
Corvin, Aiden (3)
Ophoff, Roel A (3)
Caspers, Svenja (3)
Frouin, Vincent (3)
visa färre...
Lärosäte
Umeå universitet (4)
Karolinska Institutet (4)
Lunds universitet (2)
Göteborgs universitet (1)
Stockholms universitet (1)
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (6)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy