SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ingason A) "

Sökning: WFRF:(Ingason A)

  • Resultat 1-10 av 38
  • [1]234Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bryois, J., et al. (författare)
  • Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease
  • 2020
  • Ingår i: Nature Genetics. - 1061-4036. ; 52:5, s. 482-493
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson’s disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson’s disease. © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
2.
  •  
3.
  •  
4.
  • Folkersen, Lasse, et al. (författare)
  • Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals.
  • 2020
  • Ingår i: Nature metabolism. - : Springer Nature. - 2522-5812. ; 2:10, s. 1135-1148
  • Tidskriftsartikel (refereegranskat)abstract
    • Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health.
  •  
5.
  •  
6.
  • Walters, G. B., et al. (författare)
  • MAP1B mutations cause intellectual disability and extensive white matter deficit
  • 2018
  • Ingår i: Nature Communications. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Discovery of coding variants in genes that confer risk of neurodevelopmental disorders is an important step towards understanding the pathophysiology of these disorders. Wholegenome sequencing of 31,463 Icelanders uncovers a frameshift variant (E712KfsTer10) in microtubule-associated protein 1B (MAP1B) that associates with ID/low IQ in a large pedigree (genome-wide corrected P = 0.022). Additional stop-gain variants in MAP1B (E1032Ter and R1664Ter) validate the association with ID and IQ. Carriers have 24% less white matter (WM) volume (beta = -2.1SD, P = 5.1 x 10(-8)), 47% less corpus callosum (CC) volume (beta = -2.4SD, P = 5.5 x 10(-10)) and lower brain-wide fractional anisotropy (P = 6.7 x 10(-4)). In summary, we show that loss of MAP1B function affects general cognitive ability through a profound, brain-wide WM deficit with likely disordered or compromised axons.
  •  
7.
  •  
8.
  •  
9.
  • Ingason, Arni Sigurdur, et al. (författare)
  • Magnetic Self-Organized Atomic Laminate from First Principles and Thin Film Synthesis
  • 2013
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 110
  • Tidskriftsartikel (refereegranskat)abstract
    • he first experimental realization of a magnetic Mn+1AXn (MAX) phase, (Cr0.75Mn0.25)2GeC, is presented, synthesized as a heteroepitaxial single crystal thin film, exhibiting excellent structural quality. This self-organized atomic laminate is based on the well-known Cr2GeC, with Mn, a new element in MAX phase research, substituting Cr. The compound was predicted using first-principles calculations, from which a variety of magnetic behavior is envisaged, depending on the Mn concentration and Cr/Mn atomic configuration within the sublattice. The analyzed thin films display a magnetic signal at room temperature.
  •  
10.
  • Dahlqvist, Martin, et al. (författare)
  • Magnetically driven anisotropic structural changes in the atomic laminate Mn2GaC
  • 2016
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 93:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Inherently layered magnetic materials, such as magnetic M(n+1)AX(n) (MAX) phases, offer an intriguing perspective for use in spintronics applications and as ideal model systems for fundamental studies of complex magnetic phenomena. The MAX phase composition M(n+1)AX(n) consists of M(n+1)AX(n) blocks separated by atomically thin A-layers where M is a transition metal, A an A-group element, X refers to carbon and/or nitrogen, and n is typically 1, 2, or 3. Here, we show that the recently discovered magnetic Mn2GaC MAX phase displays structural changes linked to the magnetic anisotropy, and a rich magnetic phase diagram which can be manipulated through temperature and magnetic field. Using first-principles calculations and Monte Carlo simulations, an essentially one-dimensional (1D) interlayer plethora of two-dimensioanl (2D) Mn-C-Mn trilayers with robust intralayer ferromagnetic spin coupling was revealed. The complex transitions between them were observed to induce magnetically driven anisotropic structural changes. The magnetic behavior as well as structural changes dependent on the temperature and applied magnetic field are explained by the large number of low energy, i.e., close to degenerate, collinear and noncollinear spin configurations that become accessible to the system with a change in volume. These results indicate that the magnetic state can be directly controlled by an applied pressure or through the introduction of stress and show promise for the use of Mn2GaC MAX phases in future magnetoelectric and magnetocaloric applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 38
  • [1]234Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy