SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ininbergs Karolina) "

Sökning: WFRF:(Ininbergs Karolina)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allen, Lisa Zeigler, et al. (författare)
  • The Baltic Sea Virome : Diversity and Transcriptional Activity of DNA and RNA Viruses
  • 2017
  • Ingår i: mSystems. - 2379-5077. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Metagenomic and metatranscriptomic data were generated from size-fractionated samples from 11 sites within the Baltic Sea and adjacent marine waters of Kattegat and freshwater Lake Tornetrask in order to investigate the diversity, distribution, and transcriptional activity of virioplankton. Such a transect, spanning a salinity gradient from freshwater to the open sea, facilitated a broad genome-enabled investigation of natural as well as impacted aspects of Baltic Sea viral communities. Taxonomic signatures representative of phages within the widely distributed order Caudovirales were identified with enrichments in lesser-known families such as Podoviridae and Siphoviridae. The distribution of phage reported to infect diverse and ubiquitous heterotrophic bacteria (SAR11 clades) and cyanobacteria (Synechococcus sp.) displayed population-level shifts in diversity. Samples from higher-salinity conditions (>14 practical salinity units [PSU]) had increased abundances of viruses for picoeukaryotes, i.e., Ostreococcus. These data, combined with host diversity estimates, suggest viral modulation of diversity on the whole-community scale, as well as in specific prokaryotic and eukaryotic lineages. RNA libraries revealed single-stranded DNA (ssDNA) and RNA viral populations throughout the Baltic Sea, with ssDNA phage highly represented in Lake Tornetrask. Further, our data suggest relatively high transcriptional activity of fish viruses within diverse families known to have broad host ranges, such as Nodoviridae (RNA), Iridoviridae (DNA), and predicted zoonotic viruses that can cause ecological and economic damage as well as impact human health. IMPORTANCE Inferred virus-host relationships, community structures of ubiquitous ecologically relevant groups, and identification of transcriptionally active populations have been achieved with our Baltic Sea study. Further, these data, highlighting the transcriptional activity of viruses, represent one of the more powerful uses of omics concerning ecosystem health. The use of omics-related data to assess ecosystem health holds great promise for rapid and relatively inexpensive determination of perturbations and risk, explicitly with regard to viral assemblages, as no single marker gene is suitable for widespread taxonomic coverage.
  •  
2.
  • Alneberg, Johannes, et al. (författare)
  • Ecosystem-wide metagenomic binning enables prediction of ecological niches from genomes
  • 2020
  • Ingår i: Communications Biology. - : Nature Publishing Group. - 2399-3642. ; 3:1, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Alneberg et al. conduct metagenomics binning of water samples collected over major environmental gradients in the Baltic Sea. They use machine-learning to predict the placement of genome clusters along niche gradients based on the content of functional genes. The genome encodes the metabolic and functional capabilities of an organism and should be a major determinant of its ecological niche. Yet, it is unknown if the niche can be predicted directly from the genome. Here, we conduct metagenomic binning on 123 water samples spanning major environmental gradients of the Baltic Sea. The resulting 1961 metagenome-assembled genomes represent 352 species-level clusters that correspond to 1/3 of the metagenome sequences of the prokaryotic size-fraction. By using machine-learning, the placement of a genome cluster along various niche gradients (salinity level, depth, size-fraction) could be predicted based solely on its functional genes. The same approach predicted the genomes' placement in a virtual niche-space that captures the highest variation in distribution patterns. The predictions generally outperformed those inferred from phylogenetic information. Our study demonstrates a strong link between genome and ecological niche and provides a conceptual framework for predictive ecology based on genomic data.
  •  
3.
  • Alneberg, Johannes, et al. (författare)
  • Recovering 2,032 Baltic Sea microbial genomes by optimized metagenomic binning
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Aquatic microorganism are key drivers of global biogeochemical cycles and form the basis of aquatic food webs. However, there is still much left to be learned about these organisms and their interaction within specific environments, such as the Baltic Sea. Crucial information for such an understanding can be found within the genome sequences of organisms within the microbial community.In this study, the previous set of Baltic Sea clusters, constructed by Hugert et al., is greatly expanded using a large set of metagenomic samples, spanning the environmental gradients of the Baltic Sea. In total, 124 samples were individually assembled and binned to obtain 2,032 Metagenome Assembled Genomes (MAGs), clustered into 353 prokaryotic and 14 eukaryotic species- level clusters. The prokaryotic genomes were widely distributed over the prokaryotic tree of life, representing 20 different phyla, while the eukaryotic genomes were mostly limited to the division of Chlorophyta. The large number of reconstructed genomes allowed us to identify key factors determining the quality of the genome reconstructions.The Baltic Sea is heavily influenced of human activities of which we might not see the full implications. The genomes reported within this study will greatly aid further studies in our strive for an understanding of the Baltic Sea microbial ecosystem.
  •  
4.
  • Asplund Samuelsson, Johannes, et al. (författare)
  • Diversity and expression of bacterial metacaspases in an aquatic ecosystem
  • 2016
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 7, s. 1-18
  • Tidskriftsartikel (refereegranskat)abstract
    • Metacaspases are distant homologs of metazoan caspase proteases, implicated in stress response, and programmed cell death (PCD) in bacteria and phytoplankton. While the few previous studies on metacaspases have relied on cultured organisms and sequenced genomes, no studies have focused on metacaspases in a natural setting. We here present data from the first microbial community-wide metacaspase survey; performed by querying metagenomic and metatranscriptomic datasets from the brackish Baltic Sea, a water body characterized by pronounced environmental gradients and periods of massive cyanobacterial blooms. Metacaspase genes were restricted to ~4% of the bacteria, taxonomically affiliated mainly to Bacteroidetes, Alpha- and Betaproteobacteria and Cyanobacteria. The gene abundance was significantly higher in larger or particle-associated bacteria (<0.8 μm), and filamentous Cyanobacteria dominated metacaspase gene expression throughout the bloom season. Distinct seasonal expression patterns were detected for the three metacaspase genes in Nodularia spumigena, one of the main bloom-formers. Clustering of normalized gene expression in combination with analyses of genomic and assembly data suggest functional diversification of these genes, and possible roles of the metacaspase genes related to stress responses, i.e., sulfur metabolism in connection to oxidative stress, and nutrient stress induced cellular differentiation. Co-expression of genes encoding metacaspases and nodularin toxin synthesis enzymes was also observed in Nodularia spumigena. The study shows that metacaspases represent an adaptation of potentially high importance for several key organisms in the Baltic Sea, most prominently Cyanobacteria, and open up for further exploration of their physiological roles in microbes and assessment of their ecological impact in aquatic habitats.
  •  
5.
  • Berg, Carlo, et al. (författare)
  • Dissection of Microbial Community Functions during a Cyanobacterial Bloom in the Baltic Sea via Metatranscriptomics
  • 2018
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745.
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine and brackish surface waters are highly dynamic habitats that undergo repeated seasonal variations in microbial community composition and function throughout time. While succession of the various microbial groups has been well investigated, little is known about the underlying gene-expression of the microbial community. We investigated microbial interactions via metatranscriptomics over a spring to fall seasonal cycle in the brackish Baltic Sea surface waters, a temperate brackish water ecosystem periodically promoting massive cyanobacterial blooms, which have implications for primary production, nutrient cycling, and expansion of hypoxic zones. Network analysis of the gene expression of all microbes from 0.22 to 200 mu m in size and of the major taxonomic groups dissected the seasonal cycle into four components that comprised genes peaking during different periods of the bloom. Photoautotrophic nitrogen-fixing Cyanobacteria displayed the highest connectivity among the microbes, in contrast to chemoautotrophic ammonia-oxidizing Thaumarchaeota, while heterotrophs dominated connectivity among pre- and post-bloom peaking genes. The network was also composed of distinct functional connectivities, with an early season balance between carbon metabolism and ATP synthesis shifting to a dominance of ATP synthesis during the bloom, while carbon degradation, specifically through the glyoxylate shunt, characterized the post-bloom period, driven by Alphaproteobacteria as well as by Gammaproteobacteria of the SAR86 and SAR92 clusters. Our study stresses the exceptionally strong biotic driving force executed by cyanobacterial blooms on associated microbial communities in the Baltic Sea and highlights the impact cyanobacterial blooms have on functional microbial community composition.
  •  
6.
  • Brindefalk, Björn, et al. (författare)
  • Distribution and expression of microbial rhodopsins in the Baltic Sea and adjacent waters
  • 2016
  • Ingår i: Environmental Microbiology. - : Wiley. - 1462-2912 .- 1462-2920. ; 18:12, s. 4442-4455
  • Tidskriftsartikel (refereegranskat)abstract
    • Rhodopsins are light-driven ion-pumping membrane proteins found in many organisms and are proposed to be of global importance for oceanic microbial energy generation. Several studies have focused on marine environments, with less exploration of rhodopsins in brackish waters. We investigated microbial rhodopsins in the Baltic Sea using size-fractionated metagenomic and metatranscriptomic datasets collected along a salinity gradient spanning from similar to 0 to 35 PSU. The normalised genomic abundance of rhodopsins in Bacteria, as well as rhodopsin gene expression, was highest in the smallest size fraction (0.1-0.8 mu m), relative to the medium (0.8-3.0 mu m) and large (> 3.0 mu m) size fractions. The abundance of rhodopsins in the two smaller size fractions displayed a positive correlation with salinity. Proteobacteria and Bacteroidetes rhodopsins were the most abundant while Actinobacteria rhodopsins, or actinorhodopsins, were common at lower salinities. Phylogenetic analysis indicated that rhodopsins have adapted independently to the marine-brackish transition on multiple occasions, giving rise to green light-adapted variants from ancestral blue light-adapted ones. A notable diversity of viral-like rhodopsins was also detected in the dataset and potentially linked with eukaryotic phytoplankton blooms. Finally, a new clade of likely proton-pumping rhodopsin with non-canonical amino acids in the spectral tuning and proton accepting site was identified.
  •  
7.
  • Celepli, Narin, et al. (författare)
  • Meta-omic analyses of Baltic Sea cyanobacteria : diversity, community structure and salt acclimation
  • 2017
  • Ingår i: Environmental Microbiology. - : Wiley-Blackwell. - 1462-2912 .- 1462-2920. ; 19:2, s. 673-686
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyanobacteria are important phytoplankton in the Baltic Sea, an estuarine-like environment with pronounced north to south gradients in salinity and nutrient concentrations. Here, we present a metagenomic and -transcriptomic survey, with subsequent analyses targeting the genetic identity, phylogenetic diversity, and spatial distribution of Baltic Sea cyanobacteria. The cyanobacterial community constituted close to 12% of the microbial population sampled during a pre-bloom period (June-July 2009). The community was dominated by unicellular picocyanobacteria, specifically a few highly abundant taxa (Synechococcus and Cyanobium) with a long tail of low abundance representatives, and local peaks of bloom-forming heterocystous taxa. Cyanobacteria in the Baltic Sea differed genetically from those in adjacent limnic and marine waters as well as from cultivated and sequenced picocyanobacterial strains. Diversity peaked at brackish salinities 3.5-16psu, with low N:P ratios. A shift in community composition from brackish to marine strains was accompanied by a change in the repertoire and expression of genes involved in salt acclimation. Overall, the pre-bloom cyanobacterial population was more genetically diverse, widespread and abundant than previously documented, with unicellular picocyanobacteria being the most abundant clade along the entire Baltic Sea salinity gradient.
  •  
8.
  •  
9.
  • Díez, Beatriz, et al. (författare)
  • Metagenomic Analysis of the Indian Ocean Picocyanobacterial Community : Structure, Potential Function and Evolution.
  • 2016
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Unicellular cyanobacteria are ubiquitous photoautotrophic microbes that contribute substantially to global primary production. Picocyanobacteria such as Synechococcus and Prochlorococcus depend on chlorophyll a-binding protein complexes to capture light energy. In addition, Synechococcus has accessory pigments organized into phycobilisomes, and Prochlorococcus contains chlorophyll b. Across a surface water transect spanning the sparsely studied tropical Indian Ocean, we examined Synechococcus and Prochlorococcus occurrence, taxonomy and habitat preference in an evolutionary context. Shotgun sequencing of size fractionated microbial communities from 0.1 μm to 20 μm and subsequent phylogenetic analysis indicated that cyanobacteria account for up to 15% of annotated reads, with the genera Prochlorococcus and Synechococcus comprising 90% of the cyanobacterial reads, even in the largest size fraction (3.0-20 mm). Phylogenetic analyses of cyanobacterial light-harvesting genes (chl-binding pcb/isiA, allophycocyanin (apcAB), phycocyanin (cpcAB) and phycoerythin (cpeAB)) mostly identified picocyanobacteria clades comprised of overlapping sequences obtained from Indian Ocean, Atlantic and/or Pacific Oceans samples. Habitat reconstructions coupled with phylogenetic analysis of the Indian Ocean samples suggested that large Synechococcus-like ancestors in coastal waters expanded their ecological niche towards open oligotrophic waters in the Indian Ocean through lineage diversification and associated streamlining of genomes (e.g. loss of phycobilisomes and acquisition of Chl b); resulting in contemporary small celled Prochlorococcus. Comparative metagenomic analysis with picocyanobacteria populations in other oceans suggests that this evolutionary scenario may be globally important.
  •  
10.
  • Dominguez-Escobar, Julia, et al. (författare)
  • Phylogenetic and molecular clock inferences of cyanobacterial strains within Rivulariaceae from distant environments
  • 2011
  • Ingår i: FEMS Microbiology Letters. - : Oxford University Press (OUP). - 0378-1097 .- 1574-6968. ; 316:2, s. 90-99
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterocyst-forming cyanobacteria are important players at both evolutionary and ecological scales, but to date it has been difficult to establish their phylogenetic affiliations. We present data from a phylogenetic and molecular clock analysis of heterocystous cyanobacteria within the family Rivulariaceae, including the genera Calothrix, Rivularia, Gloeotrichia and Tolypothrix. The strains were isolated from distant geographic regions including fresh and brackish water bodies, microbial mats from beach rock, microbialites, pebble beaches, plus PCC strains 7103 and 7504. Phylogenetic inferences (distance, likelihood and Bayesian) suggested the monophyly of genera Calothrix and Rivularia. Molecular clock estimates indicate that Calothrix and Rivularia originated similar to 1500 million years ago (MYA) ago and species date back to 400-300 MYA while Tolypothrix and Gloeotrichia are younger genera (600-400 MYA).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22
Typ av publikation
tidskriftsartikel (18)
annan publikation (3)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (18)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Ininbergs, Karolina (21)
Bergman, Birgitta (14)
Ekman, Martin (11)
Díez, Beatriz (5)
Dupont, Christopher ... (5)
Allen, Andrew E. (5)
visa fler...
Yooseph, Shibu (5)
Pinhassi, Jarone (4)
Dupont, Chris L. (4)
Larsson, John (4)
Andersson, Anders F. (3)
McCrow, John P. (3)
Sundh, John (3)
Nylander, Johan A. A ... (3)
Asplund Samuelsson, ... (3)
Celepli, Narin (3)
Brindefalk, Björn (2)
Beier, Sara (2)
Allen, Lisa Zeigler (2)
Badger, Jonathan H. (2)
Venter, J. Craig (2)
Alneberg, Johannes (2)
Bennke, Christin (2)
Labrenz, Matthias (2)
Celepli, Narin A. (2)
Bacsik, Zoltan (1)
Bunse, Carina (1)
Lundin, Daniel (1)
Udekwu, Klas I. (1)
Hoffman, Jeffery M. (1)
Riemann, Lasse (1)
Jürgens, Klaus (1)
Juergens, Klaus (1)
Quince, Christopher (1)
Athlin, Simon, 1971- (1)
Hagström, Åke (1)
Gorokhova, Elena (1)
Hudson, Elton Paul (1)
Wardle, David (1)
Nilsson Hegethorn, M ... (1)
Özenci, Volkan (1)
Ogonowski, Martin (1)
Eiler, Alexander (1)
Bay, Guillaume (1)
Rasmussen, Ulla (1)
McMahon, Katherine D (1)
Berg, Carlo (1)
Ran, Liang (1)
Zheng, Wei-Wen (1)
Lapidus, Alla (1)
visa färre...
Lärosäte
Stockholms universitet (18)
Kungliga Tekniska Högskolan (6)
Linnéuniversitetet (6)
Umeå universitet (3)
Karolinska Institutet (2)
Naturhistoriska riksmuseet (2)
visa fler...
Göteborgs universitet (1)
Örebro universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (22)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (22)
Teknik (1)
Medicin och hälsovetenskap (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy